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1 – Inventory Framework 
 

1A – The Carbon Cycle 

 

 

 Figure 1. The Earth’s carbon cycle (Riebeek & Simmon, 2011). 

 

The Earth’s carbon cycle is the exchange of carbon between the Earth’s five main carbon pools: the 
atmosphere, biosphere (plants, animals, algae, bacteria, and other life forms), pedosphere (soils), 
hydrosphere (oceans and other water bodies), and lithosphere (rocks and Earth’s deeper geological 
layers) (Riebeek & Simmon, 2011). Carbon is cycled between these pools via both natural and 
anthropogenic processes (Figure 1). Carbon flows from the atmospheric pool to both the biosphere 
and hydrosphere via photosynthesis conducted by plants, photosynthetic bacteria, and algae. During 
photosynthesis, light energy is captured by chlorophyll in the cells of a photosynthetic organism and 
used to convert water, carbon dioxide (CO2), and minerals into oxygen and energy-rich sugar (Figure 
2). Plants and algae use sugars as an energy source for cellular respiration, a process which releases 
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carbon back to the atmosphere as CO2 and produces the energy molecule adenosine triphosphate 
(ATP). 

Gross Primary Production (GPP) is the total amount of energy stored as a result of the photosynthetic 
process and is generally expressed as mass of carbon per unit area per unit time (e.g. 100 grams 
carbon meter-2 year-1). About half of GPP is respired; the remaining sugars are used to build tissues. 
These tissues constitute the biosphere’s non-animal biomass and, as those tissues die, dead biomass. 
GPP minus plant respiration is termed Net Primary Productivity (NPP), which is comprised of the 
total amount of living and dead biomass produced per unit area per unit time. The carbon in plant 
tissues is sequestered and does not transfer to other pools until it is released rapidly through 
disturbance (e.g. wildfire) or slowly through decomposition. Decomposition moves carbon from the 
biosphere to both the atmosphere and pedosphere. Carbon is released to the atmosphere via this 
pathway as microbes, fungi, and other decomposer organisms breakdown the organic molecules of 
dead biomass and release CO2. Similarly, this process transfers carbon to the pedosphere as soil 
organic matter (SOM) when the organic molecules of dead biomass leach into the soil. SOM can 
release carbon back to the atmosphere as CO2 when the soils are disturbed (e.g. tilled for agriculture) 
or experience a natural disturbance, such as a wildfire. Carbon in the pedosphere can move to the 
lithosphere pool when tectonic subduction forces one tectonic plate under another and it becomes 
part of the Earth’s mantle or when geological processes convert high carbon density SOM into fossil 
fuel deposits. Carbon moves out of the lithosphere during volcanic eruptions, when it is deposited on 
the Earth’s surface and becomes part of the pedosphere, or is released to the atmosphere as a gas. 
Anthropogenic extraction of fossil fuels from the lithosphere and the fuels’ subsequent combustion 
also moves carbon to the atmosphere.  

 

1B – IPCC Defined Carbon Pools and Flows for Greenhouse Gas Accounting 

The goal of greenhouse gas (GHG) accounting is to estimate the amount of carbon dioxide and other 
GHGs that are being transferred from one carbon pool to another, with special focus on the amount 
of GHGs removed from and released to the atmosphere in a given inventory period. The concept of 
pools, or reservoirs, is useful to track the fate of carbon that is moved from one pool to another as a 
result of human disturbance and/or activity. The United Nations Framework Convention on Climate 
Change (UNFCCC) defines carbon pools, or carbon reservoirs, as “components of the climate system 
where a GHG or a precursor of a GHG is stored” (UNFCCC, 2014). The pools defined by the IPCC for 
landscape GHG accounting in the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines 
for National Greenhouse Gas Inventories (“the IPCC Guidelines”), Volume 4 – Chapter 1 include: the 
Above-Ground Live (AGL) (trunks, stems, foliage) and Below-Ground Live (roots) vegetation pools; 
the dead organic matter (DOM) pools (standing or downed dead wood, litter); and the soil organic 
matter (SOM) pool.  Natural and Working Lands (NWL) carbon and greenhouse gas inventories also 
give special consideration to a forest biomass pool called Harvested Wood Products (HWP), which 
are defined as all wood material, including bark and small branches, that leave a harvest site (IPCC, 
2006l).  
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Figure 2. Carbon transfer pathways from IPCC defined reservoirs. 

 

Over time, carbon is cycled between these different pools, including the atmosphere, via 
photosynthesis, respiration, decomposition, disturbance, and combustion (Figure 2). For example, 
when a tree is harvested, a portion of its carbon is transferred from the live tree pool to the harvested 
wood product pool, and another portion to the dead organic matter pool. Similarly, during a fire some 
of the carbon contained in the above-ground live or dead organic matter pools is combusted and 
released to the atmosphere as CO2, other GHGs, particulate matter, and criteria pollutants, while the 
remaining carbon remains on the land surface in the form of unconsumed fuel, killed vegetation, 
cinders, or ash.  

The NWL inventory aims to quantify the amount of carbon stored in each of the aforementioned 
pools, as well as the amount of carbon being moved from one pool to another in a given inventory 
time period.  
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1C – Land Use Categories 

The 2006 IPCC Guidelines defines six broad land-use categories for GHG accounting: Forest Land, 
Cropland, Grassland, Wetlands, Settlements, and Other Land (Table 1). The IPCC Guidelines states 
that definitions of land-use categories may incorporate land cover type, land use, or a combination of 
the two. For convenience, the categories are referred to as land-use categories. 

 

Table 1. Land-use category definitions  (IPCC, 2006c). 

Land-Use Category Definition 

Forest Land All lands with a minimum of 10% woody vegetation cover, including shrubs 

Cropland 
Cropped lands, including rice, orchards, vineyards, field crops, and agro-
forestry systems that fall below the 10% woody vegetation threshold for Forest 
Land 

Grassland 
Rangeland, pasture, and other non-grass vegetation that fall below the 10% 
woody vegetation threshold for Forest Land 

Wetlands 
Areas used for peat extraction and land that is covered or saturated by water 
for all (perennial wetlands) or part of the year (seasonal wetlands) 

Settlements All developed land, including transportation infrastructure and settlements 

Other Land 
Bare soil, rock outcroppings, ice, and all land areas that do not fall into any of 
the other five categories 

 

Land-use categories are further disaggregated into land-use change categories in order to quantify 
the magnitude and direction of carbon flows from one pool to another (Table 2). The term “land-use 
change” is sometimes a source of confusion. In IPCC usage, the term applies to any situations where 
significant changes in land carbon stocks occur, irrespective of human or natural agency, or actual 
changes in land-use. 
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Table 2. IPCC codes for land-use and land-use change categories (IPCC 2006). 

IPCC Land-Use 
Category 

Category 
Code 

IPCC Category 

3B1 Forest Land 

3B1a Forest Land remaining Forest Land 

3B1bi Cropland Converted to Forest Land 

3B1bii Grassland Converted to Forest Land 

3B1biii Wetlands Converted to Forest Land 

3B1biv Settlements Converted to Forest Land 

3B1bv Other Land Converted to Forest Land 

3B2 Cropland 

3B2a Cropland remaining Cropland 

3B2bi Forest Land Converted to Cropland 

3B2bii Grassland Converted to Cropland 

3B2biii Wetlands Converted to Cropland 

3B2biv Settlements Converted to Cropland 

3B2bv Other Land Converted to Cropland 

3B3 Grassland 

3B3a Grassland remaining Grassland 

3B3bi Forest Land Converted to Grassland 

3B3bii Cropland Converted to Grassland 

3B3biii Wetlands Converted to Grassland 

3B3biv Settlements Converted to Grassland 

3B3bv Other Land Converted to Grassland 

3B4 Wetlands 

3B4ai Peatlands remaining Peatlands 

3B4aii Flooded Land remaining Flooded Land 

3B4bi Land converted for Peat Extraction 

3B4bii Land Converted to Flooded Land 

3B4biii Land Converted to Other Wetlands 

3B5 Settlements 

3B5a Settlements remaining Settlements 

3B5bi Forest Land Converted to Settlements 

3B5bii Cropland Converted to Settlements 

3B5biii Grassland Converted to Settlements 

3B5biv Wetlands Converted to Settlements 

3B5bv Other Land Converted to Settlements 

3B6 Other Land 

3B6a Other Land remaining Other Land 

3B6bi Forest Land Converted to Other Land 

3B6bii Cropland Converted to Other Land 

3B6biii Grassland Converted to Other Land 

3B6biv Wetlands Converted to Other Land 

3B6bv Settlements Converted to Other Land 

 

Land-use types are used in the IPCC GHG accounting architecture to define the magnitude and 
direction of carbon flow from one pool to another (Figure 3) and are disaggregated by climate 
domain (Boreal, Temperate, and Tropical), ecological zone, management regime, and other factors. 
For example, when Forest Land is converted to Settlements, carbon flows out of the soil organic 
matter pool and into the atmosphere due to soil disturbance from excavation and other development 
activities. The amount of carbon transferred is dependent on factors such as the initial carbon stock 
in a pool, the type of flow that is causing the carbon transfer (e.g. wildfire or land-use conversion), 
and the aforementioned land-use type disaggregation factors.  
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Figure 3. IPCC land-use and land-use change categories.  

 

Land-use and land-use change as defined by the 2006 IPCC Guidelines was mapped with the 
LANDFIRE existing vegetation type (EVT) raster datasets for all inventory periods (IPCC, 2006c) 
(Ryan & Opperman, 2013). Each of the 239 EVTs were mapped to an IPCC category – 132 to Forest 
Land, 46 to Cropland, 25 to Settlements, 17 to Grassland, 15 to Other Land, and 4 to Wetlands – 
according to the methodologies detailed in California Air Resources Board contract agreements 10-
778 and 14-757 (Figure 4). 

Using this methodology to identify land-use and land-use change for the State of California resulted 
in inventory time-steps being defined by the availability of LANDFIRE product vintages for the Forest 
and Other Natural Lands (FONL) and Soil Carbon sections of the Agriculture, Forestry, and Other 
Land-Use (AFOLU) inventory. Higher quality data were available for the Urban Forests and Cropland 
Woody Biomass sections, hence these inventories did not use LANDFIRE to define land-use and land-
use change and consequently have inventory time-steps that differ from the aforementioned FONL 
and Soil Carbon sections.  
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Forest 
Land 

Cropland Grassland Wetlands Settlements Other Land Waterbody 

       

Figure 4. Distribution of land-use categories in 2014 for the State of California. 

1D – Approaches and Methods 

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories provides three framework 
options for inventory reporting: (1) the stock-change approach (SCA) reports changes in ecosystem 
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carbon stocks and wood products in the reporting country, including imported wood products, (2) 
the production approach (PA) reports changes in ecosystem carbon stocks and wood products 
produced in the reporting country (changes in wood products exported from the producing country 
are also reported, while products imported to the reporting country are not counted), and (3) the 
atmospheric flow approach (AFA) accounts for carbon fluxes to/from the atmosphere for lands and 
wood products pools, including imported products. Each option prescribes specific system 
boundaries.  

California Air Resources Board (CARB) staff uses the AFA because the system boundaries are most 
consistent with how emissions from anthropogenic sources are accounted for in the GHG inventory. 
The AFA includes in its estimate the exchange of carbon with the atmosphere due to changes in 
carbon stocks in forests and other natural lands, and carbon releases to the atmosphere associated 
with harvested wood products.   

The IPCC also provides two accounting methods for estimating the exchange of carbon between the 
atmosphere, biosphere, and other pools (IPCC 2006): (1) the gain-loss method (sometimes described 
as process-based) subtracts carbon losses from carbon gains to estimate the net balance of additions 
to and losses from a pool, and (2) the stock-difference method estimates the difference in the carbon 
stock of a pool at two points in time. CARB staff use the stock-difference method because stock 
estimates are derived from data collected in the state. The gain-loss method entails sophisticated 
land-atmosphere exchange process models, which require extensive resources to develop, calibrate, 
validate, and maintain. Process models have advantages in that they can account for both stocks and 
flows in ways that capture inter-annual variability.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1E – Tier of Methodology 

IPCC provides three methodology tiers in its GHG inventory guidance. Lower tiers are less resource 
intensive and are designed for ease of use whereas higher tiers are generally regarded as more 
accurate but require significantly more resources to produce. A combination of tiers can be used for 
different sections of the inventory. This allows an inventorying jurisdiction to create a complete 
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inventory while simultaneously providing greater accuracy for key sectors or sectors for which 
higher quality data is available.  

The tiers are defined by the IPCC as follows (IPCC, 2006a): 

Tier 1 methods are designed to be the simplest to use, for which equations and default parameter 
values (e.g. emission and stock change factors) are provided in the 2006 IPCC Guidelines for National 
Greenhouse Gas Inventories. Country-specific activity data are needed. Globally available activity 
data sources are available, although such sources are often spatially course.  

Tier 2 methods use the Tier 1 methodological approach but utilizes country-specific emission and 
stock change factors for the most important land-use and livestock categories. Higher resolution 
temporal and spatial data is often used to correspond with factors for specific regions and specialized 
land-use categories. 

Tier 3 features custom measurement systems and/or models repeated over time and driven by high-
resolution activity data and disaggregated at the sub-national level. Such systems may include 
comprehensive field sampling repeated at regular time intervals and/or GIS-based systems of age, 
class/production data, soils data, and land-use and management activity data, integrating several 
types of monitoring. Pieces of land where a land-use change occurs can usually be tracked over time, 
at least statistically. In most cases these systems have a climate dependency, and thus provide source 
estimates with inter-annual variability. Models should undergo quality checks, audits, and 
validations and be thoroughly documented. 

Wherever possible, higher tier methodologies were used to create the NWL inventory. The decision 
tree for inventory creation (Figure 5) outlines the process CARB staff used when deciding on an 
inventory tier for each sector. 
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Figure 5. Generic decision tree for identification of appropriate IPCC methodology tier to estimate 
changes in carbon stocks.  
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1F – Disturbance 

IPCC provides guidance for reporting ecosystem carbon stock changes associated with natural and 
anthropogenic conversions between land categories. Ten of the twenty-eight conversion categories 
(Table 2) implicitly involve anthropogenic disturbance. These include conversions to cropland or 
settlements and typically involve clearing land of extent vegetation. In addition, IPCC provides 
guidance for reporting ecosystem carbon stock changes associated with the removal of forest carbon 
via tree harvest (IPCC category 3D1 – Harvested Wood Products) and biomass burning on land (IPCC 
category 3C1 – Emissions from Biomass Burning). Greenhouse gases associated with land biomass 
burning include CO2, CH4, and N2O. Harvested wood products include wood destined for fuel use. GHG 
accounting guidance is also provided for carbon persisting in solid form in wood products and 
emissions associated with wood carbon losses during manufacture (such as mill residues combusted 
for heat and power) and decay upon disposal at the end of product life. 

Disturbance data sources include land use/land cover changes revealed through time series in the 
LANDFIRE Existing Vegetation Type (EVT) geospatial product, and the LANDFIRE disturbance 
product DISTYEAR. The DISTYEAR product georeferences areas where fires, harvests, and other 
events occurred in a given year. 
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2 – Forest and Other Natural Lands 
 

2A – Background 

This document follows the analysis for forests and other natural lands (FONL) in 2001-2010 by 
reporting changes in carbon stocks for the 2010-2012 period. A principal difference between the two 
analysis periods is the magnitude of the time interval. Due to the duration of the 2001-2010 period, 
a large number of disturbance events (namely fire) accumulated in the spatial data and figured 
prominently in stock change estimates. The 2010-2012 period exhibited less disturbance and a 
reduced contribution by fire to overall disturbance. The lack of disturbance contributed to greater 
stock gains in lands that remained in forest cover, compared to the 2001-2010 period. Sources and 
methods used for 2010-2012 are the same as in 2001-2010, with one exception. During the initial 
2010-2012 analysis, quality assurance checks using state timber harvest data suggested that forest 
harvest activity was under-represented in the LANDFIRE disturbance activity raster product for the 
analysis period. In order to improve stock change attribution to disturbance processes, state Timber 
Harvest Plan (THP) geodata were used to fill data gaps in the LANDFIRE disturbance dataset. 

 

2B – Methodology 

 

2B.1 – Forests and Other Lands Biomass 

ARB estimates for biomass, carbon stocks and stock change on forests and other lands for 2010 – 
2012 are based on sources and methods developed under a contract with the University of 
California– Berkeley (Battles, et al., 2013), reported in Gonzalez et al. (2015), and developed further 
under a follow-up contract (Saah, et al., 2016). The methods combine geospatial vegetation and 
disturbance activity data with tabular data from georeferenced forest plots, reference databases and 
literature. Thirty meter resolution geospatial data from the federal LANDFIRE program (Ryan & 
Opperman, 2013) include vegetation species composition (existing vegetation type, EVT and 
vegetation order [tree, shrub, or grass/herbaceous-dominated]) and structure (canopy height class 
EVH, and canopy cover class EVC) for 2010 and 2012, and disturbance activity (fire, harvest, thinning, 
etc.) throughout the 2010 – 2012 period. Field data include biomass densities (Mg ha-1) calculated 
from regional allometric equations for the above- and below-ground live tree and standing dead tree 
pools, and modeling of understory vegetation, down dead and litter pools in 3,623 georeferenced 
forest plots maintained by the Forest Inventory and Analysis (FIA) program of the USDA Forest 
Service (Battles, et al., 2013). Biomass densities for shrub-dominated lands were compiled from field 
data reported in the LANDFIRE reference database (LFRDB) and in published literature. For land 
types dominated by non-woody vegetation such as grassland, wetlands, and sparsely vegetated 
lands, biomass densities were derived from NPP estimated from the Moderate Resolution Imaging 
Spectroradiometer (MODIS product MOD17A). ARB refinements to the methods include accounting 
for carbon increments associated with live tree growth undetected by the satellite-derived 
LANDFIRE products, post-harvest carbon persisting in wood products, and development of default 
biomass densities for croplands and selected categories of developed lands. 

Biomass densities (Mg C ha-1) and total biomass (Mg C pixel-1) in forests and other lands for 2010 and 
2012 were estimated at 30 meter spatial resolution using regression equations designed to predict 
biomass and carbon stocks as functions of LANDFIRE vegetation attributes EVT, EVC and EVH 
(Gonzalez, et al., 2015). Stock rasters for 2010 included adjustment for growth in 2001-2010, as 
described in the Technical Documentation for California’s Forest and Other Natural Lands Carbon 
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and Emission Inventory for 2001-2010 (CARB, 2017a). The method assumes the carbon content of 
biomass is 0.47 g C g-1 biomass (± 0.0235 g C g-1 biomass) (Gonzalez, et al., 2015).  In order to report 
carbon stocks and change by IPCC categories, LANDFIRE EVTs for California (n = 168) were assigned 
to IPCC land categories. One hundred and thirty-two EVTS were assigned to the Forest Land category. 
Of these, eighty-nine were tree-dominated and forty-three were shrub-dominated types, according 
to the LANDFIRE attribute vegetation Order. The remaining thirty-six EVTs were assigned to the 
Grassland (17), Other Land (15) and Wetlands (4) categories. 

Raster subtraction was used to estimate stock change in the AGL and Total pools (live and dead pools 
combined, not including soil carbon) for the 2010 - 2012 analysis period. For many areas dominated 
by trees in both 2010 and 2012, LANDFIRE data did not report changes in forest canopy height or 
canopy cover. The “non-detection” of forest canopy growth is due in part to the ordinal nature of 
LANDFIRE canopy cover and height classes. For canopy cover, LANDFIRE defines ten classes that 
increase in even steps of 10%, while LANDFIRE defines five canopy height classes of 0-5, 5-10, 10-25, 
25-50, and >50 meters. If over the analysis period the average height or cover at a location changed 
but did not cross into the next class, the method would record no change in biomass. Because tree 
growth occurs slowly relative to the span of the analysis period, the method can underestimate 
biomass changes due to growth within a cover or height class. Consequently, the method is sensitive 
to abrupt changes associated with disturbance while less sensitive to slow changes associated with 
growth, particularly in mature forests. Tree re-measurement data reported in FIA database version 
6.0 (released October 2, 2014) indicated that over a decade, live tree biomass increased statewide on 
average by 6% (Gonzalez, et al., 2015). In order to account for the carbon increment associated with 
live tree growth in areas dominated by trees in both 2010 and 2012 and where LANDFIRE did not 
detect change, an adjustment factor representing growth increment over two years (Equation 1) 
was applied to the 2012 above-ground live stocks. The adjusted 2012 rasters for AGL and Total were 
used together with the 2010 rasters to evaluate stock change (Figure 6). Stocks and stock changes 
were tabulated by IPCC reporting categories.  

 

 
Equation 1: Derivation of a two-year growth increment based on a decadal growth rate 
 

f(t) = 𝑎𝑒𝑘𝑡 
 
Where: 
 
 f(t) = 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 (106) 

 a = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 (100) 

 𝑘 = 𝐺𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 

 t = 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 (9 𝑦𝑒𝑎𝑟𝑠)       
 
Solving for k: 
 

 
106

100
= 𝑒𝑘9 

 a = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 (100) 

 ln 1.06 = 𝑘9 ln 𝑒 

 
ln 1.06

9
= 𝑘       

 0.00647 = 𝑘       
 

 



 

December 2018 Draft 
18 

 

 

Figure 6. Workflow diagram (stock change attribution not shown). 
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2B.2 – Stock Change Attribution: Introduction 

IPCC inventory guidelines provides for stock change attribution by selected disturbance types. These 
include biomass burning (IPCC category 3C1) and wood harvest (IPCC category 3D1). LANDFIRE 
geospatial data on disturbance activity was used to locate areas where fires and harvest related 
activities occurred during 2010-2012. LANDFIRE harvest activity geodata was augmented with data 
extracted from the state Forest Practice Geographical Information System (CALFIRE, 2017). 
Completed harvests contained in the Forest Practice GIS were selected and rasterized based on 
overlay and inspection with the AGL stock change raster. The additional harvest footprints were 
merged with the LANDFIRE harvest activity geodata. LANDFIRE fire categories include wildfires 
(Wildfire), prescribed wildland burning (Rx fire), and Wildland Fire Use (WFU).  Harvest related 
categories include Clearcut, Thinning, Harvest, Mastication and Other Mechanical. Stock changes 
were attributed by spatial overlay of disturbance areas upon the stock change raster layers. There 
were areas where fire and harvest “footprints” spatially overlapped, potentially confounding stock 
change attribution. Moreover, wildfires were spatially extensive, whereas harvest-related activities 
had limited spatial extent.  More information on the spatial extent of wildfires is discussed in the 2C 
– Data Sources section (Figure 7) and the 2D – Results section (Table 3). In order to attribute stock 
change to a single disturbance type and to avoid double counting, a calculation priority was applied: 
Clearcut > Harvest > Other Mechanical > Thinning > Mastication > Wildfire > WFU > Rx fire (Saah, et 
al., 2016). The prioritization scheme principally served to avoid under-reporting stock changes 
attributed to harvest activities, for locations that would otherwise have been attributed to fire. 

 

2B.3 – Stock Change Attribution: Fire (IPCC 3C1) 

Attributing stock change to fire is complicated by the fact that fire differentially propagates and 
consumes live and dead vegetation, depending on environmental conditions such as fuel moisture 
levels, fuel loads and configuration, topography, and weather. In intense forest fires, large amounts 
of dead woody debris and litter are consumed. In the process, some trees are killed (either by crown 
torching or by cambium destruction from intense heat at the ground surface) while others survive. 
Fires in shrub lands and grasslands typically consume nearly all above-ground biomass. Post-fire 
landscapes therefore feature barren areas, unburned dead fuels, killed trees, patches of intact or 
surviving vegetation, and re-emergent vegetation. Stock change attribution according to fire was 
achieved by spatial overlay of LANDFIRE-mapped burn areas on the stock change rasters. The fire-
attributed stock changes account only for carbon contained in live and dead pools associated with 
the post-fire (e.g. 2012) vegetation type, and have no memory of the previous vegetation type, i.e. 
they do not account for potential post-fire carbon persisting in unburned fuels or in killed trees. 
Elsewhere, fires re-occurred during the 2010-2012 period. In these locations, it was not possible to 
quantify stock change associated with each fire occurrence, because stock change attribution to fire 
was based on a stock difference between 2010 and 2012. 

 

2B.4 – Stock Change Attribution: Thinning, Harvest, and Clearcut (IPCC 3D1) 
Tree harvests transfer a fraction of tree carbon from live biomass to wood product pools. In the 
process, some carbon is lost to the atmosphere while a fraction persists for a time in solid form. 
Harvests and other vegetation management activities generate stock changes that are difficult to 
quantify using remotely-sensed data, since such activities are episodic, affect different tree size/age 
class cohorts, generate varied proportions of residues and products, and because vegetation recovers 
at varying rates between data acquisition years.  

LANDFIRE disturbance and state timber harvest geodata for 2010-2012 was used to locate areas 
where Thinning, Clearcut, Harvest, Mastication or Other Mechanical activities occurred. Thinning is 
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a forestry practice that reduces the number of trees per unit land area in order to improve growing 
conditions for remaining trees. Clearcuts remove essentially all trees in order to harvest wood and 
to produce exposed sites for re-planting or for natural regeneration. LANDFIRE defines Harvest as a 
general term for a variety of practices that involve cutting and gathering forest trees and assigns the 
term to locations where there is insufficient information to classify activities as either Clearcut or 
Thinning (Saah, et al., 2016). Mastication and Other Mechanical methods are among a variety of 
techniques applied by land managers to reduce vegetation fuel loads and wildfire hazard in selected 
areas. LANDFIRE defines Mastication as the mowing or chipping of vegetation, while Other 
Mechanical represents a variety of vegetation fuels management techniques such as felling and piling, 
lop and scatter, and chaining. 

Stock change estimates were retrieved for areas mapped as having been clearcut, harvested, thinned, 
or subjected to mastication or other mechanical treatment during the 2010-2012 period. For 
purposes of this analysis, Mastication and Other Mechanical were assumed to generate no off-site 
wood products. Stock changes associated with Mastication and Other Mechanical are therefore 
included in the Results section (Table 3) for informational purposes, but are not components of 
wood product quantification. The estimated stock changes in the AGL pool for Thinning, Clearcut and 
Harvest areas represent the amount of tree biomass removed from the live pool and destined for 
processing into wood products. The amount of wood product produced from the biomass removed 
from these areas was estimated using California-specific coefficients based on Stewart and Nakamura 
(2012) and Saah et al. (2012). From these, it was estimated that approximately 76% of removed AGL 
carbon persists in solid form two years after production. To estimate the net stock change associated 
with Thinning, Harvest and Clearcut, the estimated amount of persistent wood product carbon was 
deducted from the associated harvest AGL gross stock change.  The estimated net stock change of 
harvest represents carbon losses to the atmosphere associated with the fate of residues on-site, at 
mills, and with discards. 

 

2C – Data Sources 

 

2C.1 – Forests and Other Lands 
LANDFIRE geospatial vegetation data for 2010 (version LF 1.2.0) and 2012 (version LF 1.3.0) used 
in the analysis include the raster products Existing Vegetation Type (EVT), Existing Vegetation Cover 
(EVC), Existing Vegetation Height (EVH), and disturbances from 2010 through 2012 (DISTYEAR). All 
were obtained from the LANDFIRE data distribution site (LANDFIRE, 2018). Supplemental harvest 
geodata was obtained from the state Forest Practice GIS database (CALFIRE, 2017). Regression 
equations used to estimate biomass densities (Mg ha-1) for tree-dominated lands from LANDFIRE 
vegetation attributes EVT, EVC and EVH were developed by researchers at the University of 
California at Berkeley and the National Park Service (Battles, et al., 2013) (Gonzalez, et al., 2015). 

Biomass densities (Mg ha-1) for land classified by LANDFIRE as shrub-dominated were compiled 
from the LANDFIRE reference database (LFRDB) and from published literature (Battles, et al., 2013) 
(Gonzalez, et al., 2015). 

For land classified by LANDFIRE as dominated by grasses and herbaceous vegetation, NPP raster data 
(MODIS satellite product MOD17A3, available from the USGS Land Processes Distributed Active 
Archive Center) was used to approximate biomass densities (Battles, et al., 2013) (Gonzalez, et al., 
2015). 

Default biomass densities for Croplands and Settlements were based on compilations from literature 
and from spatial analysis (Saah, et al., 2016). 
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2C.2 – Fire, Thinning, Harvest, Clearcut 

Supplemented by state harvest geodata, the LANDFIRE raster product DISTYEAR was used to locate 
and select fire and harvest areas in the 2010-2012 period in order to attribute and tabulate stock 
changes according to fire or harvest (Figure 7). Estimates for carbon persisting as wood product 
were based on coefficients developed by Stewart and Nakamura (2012) and by Saah et al. (2012). 
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Figure 7. Disturbances by type during 2010 – 2012. 
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2D – Results 

 

As in prior analyses, the Forest Land category contained the vast majority of statewide land carbon 
stock, arrayed in mountain regions of the state (not shown). Areas that were tree-dominated in both 
2010 and 2012 contributed to a net change of +11.5 MMT C in the AGL pool for the category Forest 
Land remaining Forest Land (IPCC 3B1a, Table 3), representing an annualized rate of approximately 
+5.7 MMT C yr-1. This rate is a factor of 3 greater than in 2001-2010 and is due to comparatively less 
disturbance. Overall, Total carbon stocks (live and dead pools, not including soils) increased in lands 
that remained forested over the period.  Elsewhere, stock decline exhibited in land that changed from 
forest cover to grassland (IPCC 3B3bi, Table 3) is associated with losses due to fire (Table 5). 

  

For the 2010-2012 period, land that changed from forest cover to developed (category IPCC 3B5bi) 
exhibited stock declines of 6.9 MMT C in the AGL pool and 16.6 in the Total pool. The declines are an 
order of magnitude greater than stock declines reported for this category in the 2001-2010 period 
(ARB 2017). Inspection of the stock-change rasters revealed spatial networks of stock-loss, 
corresponding to local roads (not shown).  Further examination revealed that mapped local roads 
were a new feature of the LANDFIRE EVT product for 2012.  Taken together, local roads present in 
the 2012 EVT and not in the 2010 EVT products created artifact changes in land type and stock-loss 
at those locations from 2010 to 2012.  Spatial analysis estimated that over 5.7 MMT C of the AGL and 
13.5 MMT C of the Total stock-loss for this category are artifacts of the (pre-existing yet) newly 
mapped roads. If applied to the values reported above, the adjusted change in AGL and Total carbon 
for this category would be approximately 1.1 and 3.1 MMT C, respectively. The revised estimate of 
change in forest AGL due to conversion over two years (0.6 MMT C) is slightly below a range (0.87-
1.85 MMT C) derived from a recent analysis (Christensen, et al., 2017).  Because the quantities of 
forest stock involved are small relative to overall forest stocks, the artifact portion of the forest stock-
changes for this category have not been applied to modify either the LANDFIRE raster datasets or the 
values reported in Forest Land remaining Forest Land (IPCC 3B1a). 

For the 2012 – 2014 period, Forest Land that remained Forest Land exhibited a net gain in AGL 
carbon that was nearly half the magnitude for 2010 – 2012, approximately 5 MMT (Table 3b).  
Elsewhere, carbon losses are associated with Forest Land that changed to land dominated by grasses, 
driven largely by fire. Also for the 2012-2014 period, carbon gains are associated with grasslands 
that became Forest Land during the period. These changes were observed in locations within regions 
of the southern Cascades and central and southern coasts, where areas classified by LANDFIRE as 
grassland in 2012 were classified in 2014 as woodlands. 

 

2D.1 – Uncertainty 

Uncertainties associated with measurement, sampling, regression, and model selection influence 
regional-scale estimates of forest biomass and carbon stocks. Sampling errors (SE) represent the 
uncertainty associated with sampling areas (plots) that are small relative to total forest area.  
Uncertainties are associated with regression models (allometric equations) that are the basis for 
estimating tree wood volume and biomass (bole, bark, stems, roots, foliage) from measurements of 
trunk diameter and tree height. Moreover, multiple regression models exist for given tree species, 
and model selection can contribute to uncertainties in carbon estimates ranging between ± 20 to 40 
percent (Melson, et al., 2011). These sources of uncertainty, together with land cover classification 
uncertainty associated with LANDFIRE, result in an overall uncertainty of approximately ±20% (95% 
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confidence interval) for AGL carbon stocks and change across natural lands statewide (Battles et al. 
2013, Gonzalez et al. 2015).  Uncertainty estimates for dead carbon pools are not yet developed. 
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Table 3a. 2010 – 2012 change in land carbon stocks ecosystem budget sign convention: gains (+), 
losses (-). Note categories To Be Determined (TBD). 

IPCC Land 
Category 

Category 
Code 

IPCC Category 

106 Metric Tons Carbon 
(MMT C) 

Above-Ground 
Live (AGL) 

Total1 (Live & 
Dead) 

3B1 Forest 
Land2 

3B1a Forest Land remaining Forest Land 11.53 14.85 

3B1bi Cropland Converted to Forest Land TBD TBD 

3B1bii Grassland Converted to Forest Land 0.00 0.00 

3B1biii Wetlands Converted to Forest Land NA NA 

3B1biv Settlements Converted to Forest 
Land 

NA NA 

3B1bv Other Land Converted to Forest Land NA NA 

 subtotal 11.53 14.85 

3B2 
Cropland 

3B2a Cropland remaining Cropland TBD TBD 

3B2bi Forest Land Converted to Cropland -0.49 -2.56 

3B2bii Grassland Converted to Cropland -0.05 -0.11 

3B2biii Wetlands Converted to Cropland NA NA 

3B2biv Settlements Converted to Cropland NA NA 

3B2bv Other Land Converted to Cropland -0.004 0.02 

 subtotal -0.55 -2.64 

3B3 
Grassland 

3B3a Grassland remaining Grassland -0.30 -1.54 

3B3bi Forest Land Converted to Grassland -3.67 -10.87 

3B3bii Cropland Converted to Grassland TBD TBD 

3B3biii Wetlands Converted to Grassland NA NA 

3B3biv Settlements Converted to Grassland NA NA 

3B3bv Other Land Converted to Grassland NA NA 

 subtotal -3.97 -12.41 

3B4 
Wetlands 

3B4ai Peatlands remaining Peatlands NA NA 

3B4aii Flooded Land remaining Flooded 
Land 

0.00 0.00 

3B4bi Land Converted for Peat Extraction NA NA 

3B4bii Land Converted to Flooded Land NA NA 

3B4biii Land Converted to Other Wetlands 0.00 NA 

 subtotal 0.00 0.00 

3B5 
Settlements 

3B5a Settlements remaining Settlements TBD TBD 

3B5bi Forest Land Converted to 
Settlements 

footnote 3 footnote 3 

3B5bii Cropland Converted to Settlements TBD TBD 

3B5biii Grassland Converted to Settlements -0.02 -0.09 

3B5biv Wetlands Converted to Settlements NA NA 

3B5bv Other Land Converted to Settlements -0.00 0.00 

 subtotal -0.02 -0.09 

3B6 Other 
Land4 

3B6a Other Land remaining Other Land 0.00 0.00 

3B6bi Forest Land Converted to Other Land 0.23 0.94 

3B6bii Cropland Converted to Other Land TBD TBD 

3B6biii Grassland Converted to Other Land -0.00 -0.00 

3B6biv Wetlands Converted to Other Land NA NA 

3B6bv Settlements Converted to Other Land NA NA 

 subtotal 0.23 0.94 

  sum MMT C5 7.22 0.65 
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1 Includes Above-Ground Live (AGL) and Below-Ground Live (tree, understory, shrub, grass/herbaceous) Standing Dead, 
Down Dead, Litter - Not including soil. 

2 IPCC definition of Forest Land includes land dominated by shrubs.  Category 3B1a AGL stock change includes 0.01303 
fractional stock increment associated with tree growth in lands dominated by trees in both 2010 and 2012, from FIA data 
(growth not detected by satellite). 

3 See discussion in Results section. 

4 IPCC definition of Other Land includes sparsely vegetated, barren, rock/ice, and lands that do not fall within the other 5 
categories. 

5 Does not account for carbon persisting in wood products 

 

 

 

Table 4a. 2012 – 2014 change in land carbon stocks ecosystem budget sign convention: gains (+), 
losses (-). Note categories To Be Determined (TBD). 

IPCC Land 
Category 

Category 
Code 

IPCC Category 

106 Metric Tons Carbon 
(MMT C) 

Above-Ground 
Live (AGL) 

Total1 (Live & 
Dead) 

3B1 Forest 
Land2 

3B1a Forest Land remaining Forest Land 4.96 3.63 

3B1bi Cropland Converted to Forest Land TBD TBD 

3B1bii Grassland Converted to Forest Land 3.18 27.85 

3B1biii Wetlands Converted to Forest Land NA NA 

3B1biv Settlements Converted to Forest 
Land 

NA NA 

3B1bv Other Land Converted to Forest Land 0.00 0.00 

 subtotal 8.15 31.49 

3B2 
Cropland 

3B2a Cropland remaining Cropland TBD TBD 

3B2bi Forest Land Converted to Cropland NA NA 

3B2bii Grassland Converted to Cropland NA NA 

3B2biii Wetlands Converted to Cropland NA NA 

3B2biv Settlements Converted to Cropland NA NA 

3B2bv Other Land Converted to Cropland   

 subtotal NA NA 

3B3 
Grassland 

3B3a Grassland remaining Grassland 0.00 0.00 

3B3bi Forest Land Converted to Grassland -6.05 -15.87 

3B3bii Cropland Converted to Grassland TBD TBD 

3B3biii Wetlands Converted to Grassland NA NA 

3B3biv Settlements Converted to Grassland NA NA 

3B3bv Other Land Converted to Grassland NA NA 

 subtotal -6.05 -15.86 

3B4 
Wetlands 

3B4ai Peatlands remaining Peatlands NA NA 

3B4aii Flooded Land remaining Flooded 
Land 

0.00 0.00 

3B4bi Land Converted for Peat Extraction NA NA 

3B4bii Land Converted to Flooded Land NA NA 

3B4biii Land Converted to Other Wetlands 0.00 NA 

 subtotal 0.00 0.00 

3B5a Settlements remaining Settlements TBD TBD 
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3B5 
Settlements 

3B5bi Forest Land Converted to 
Settlements 

NA NA 

3B5bii Cropland Converted to Settlements TBD TBD 

3B5biii Grassland Converted to Settlements NA NA 

3B5biv Wetlands Converted to Settlements NA NA 

3B5bv Other Land Converted to Settlements NA NA 

 subtotal NA NA 

3B6 Other 
Land4 

3B6a Other Land remaining Other Land 0.00 0.00 

3B6bi Forest Land Converted to Other Land NA NA 

3B6bii Cropland Converted to Other Land TBD TBD 

3B6biii Grassland Converted to Other Land NA NA 

3B6biv Wetlands Converted to Other Land NA NA 

3B6bv Settlements Converted to Other Land NA NA 

 subtotal NA NA 

  sum MMT C5 2.10 15.63 

1 Includes Above-Ground Live (AGL) and Below-Ground Live (tree, understory, shrub, grass/herbaceous) Standing Dead, 
Down Dead, Litter - Not including soil. 

2 IPCC definition of Forest Land includes land dominated by shrubs.  Category 3B1a AGL stock change includes 0.01303 
fractional stock increment associated with tree growth in lands dominated by trees in both 2010 and 2012, from FIA data 
(growth not detected by satellite). 

3 See discussion in Results section. 

4 IPCC definition of Other Land includes sparsely vegetated, barren, rock/ice, and lands that do not fall within the other 5 
categories. 

5 Does not account for carbon persisting in wood products 

 

 

 

In contrast to the 2001-2010 period, wildfire activity in 2010-2012 represented a reduced 
contribution to disturbance-related stock changes. Of the eight LANDFIRE disturbance types 
evaluated, wildfires affected 1.5 times more area than all other disturbance types combined (Table 
5), approximately half the rate exhibited for the pyrogenic 2001-2010 period. The total wildfire area 
in the state mapped by LANDFIRE for 2010-2012 was approximately 1% greater than an area total 
derived from a state geodatabase (4,660 km2) (FRAP, 2017). The difference in area is attributed 
largely to differences in minimum fire area mapping thresholds of the two geodatabases. Spatial 
analysis attributed approximately 9 MMT C of stock loss from the Total carbon pool to wildfires, 
representing approximately half of the overall stock change (Table 5), less than in 2001-2010, when 
losses attributed to wildfires represented 80% of overall stock change. Prescribed fire and WFU 
represented order of magnitude smaller stock losses. Greater wildfire activity in the 2012-2014 
period (1,936,568 acres) than in 2010-2012 (1,161,962 acres) contributed to a concomitant increase 
in carbon stock loss. 

For the 2010 – 2012 period, the total area affected by Thinning, Clearcut, Harvest, Mastication and 
Other Mechanical activities was almost 60% of the magnitude of the area affected by wildfire, and 
stock declines (not accounting for post-harvest carbon persisting in wood products) were less than 
half the magnitude of the loss represented by wildfire. Of the -1.4 MMT C gross stock change in the 
AGL pool attributed to Thinning, Clearcut and Harvest (Table 6), approximately 1.04 MMT of the 
removed carbon persisted in solid form over the period. Taken together, accounting for post-harvest 
persistent carbon evaluated to a net stock change for harvest activities of -0.3 MMT C for the AGL 
pool (Table 6). Meanwhile, stock change associated with Mastication and Other Mechanical was 
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approximately one-fourth the magnitude of the other three harvest-related activities combined. As 
of this writing, CARB staff has assessed that harvest activities may be under-represented in 
LANDFIRE’s disturbance geodata for the 2012-2014 period. Staff are examining supplemental 
geodata to locate harvest activities and to improve stock change attribution for this analysis period.  
Draft estimates of stock change attributed to harvest activities reported here are based on 2010 – 
2012 stock changes prorated (or scaled) to harvest acreages for 2012, 2013 and 2014 as reported in 
the 2017 Forest and Range Assessment. 
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Table 5. State-wide 2010 – 2012 stock change attribution by LANDFIRE disturbance category in 
the total1 carbon pool.  

Note: Quantities reported here are subsumed within the stock changes reported in Table 3 and are 
not additive.  

Attribution 
106 Metric Tons Carbon 
(MMTC)1 

km2 acres 

Wildfire -9.04 4,702.3 1,161,962.3 

Thinning2 -0.52 653.3 161,440.1 

Clearcut2 -2.36 382.0 94,396.1 

Harvest2 -0.38 445.3 110,038.1 

Other mechanical -0.39 999.5 354,398.5 

Prescribed fire (Rx fire) -0.32 327.4 246,977.6 

Wildland Fire Use (WFU) 0.00 5.7 1,409.3 

Mastication -0.45 243.8 60,238.1 
1 Includes Above-Ground Live (AGL) and Below-Ground Live (tree, understory, shrub, grass/herbaceous) Standing Dead, 
Down Dead, Litter - Not including soil. 

2 Stock-loss estimate does not include carbon persisting as wood product. 

 

Table 4b. State-wide 2012 – 2014 stock change attribution by LANDFIRE disturbance category in 
the total1 carbon pool. 

Note: Quantities reported here are subsumed with the stock changes reported in Table 3b and are 
not additive. 

Attribution 
106 Metric Tons Carbon 
(MMTC)1 

km2 acres 

Wildfire -19.7 7,837 1,936,568 

Thinning2 TBD TBD TBD 

Clearcut2 TBD TBD TBD 

Harvest2 -6.493 1,922 475,0003 

Other mechanical TBD TBD TBD 

Prescribed fire (Rx fire) -0.06 365 90,233 

Wildland Fire Use (WFU) NA NA NA 

Mastication TBD TBD TBD 
1 Includes Above-Ground Live (AGL) and Below-Ground Live (tree, understory, shrub, grass/herbaceous) Standing Dead, 
Down Dead, Litter - Not including soil. 

2 Stock-loss estimate does not include carbon persisting as wood product. 

3 SDraft estimates, based on sum of harvested acres 20012-2014 (2017 Forest and Range Assessment). 

 

 

 

 

 

Table 6a. 2010-2012 stock change attribution by IPCC category.  

Note: Quantities reported here are subsumed within the stock changes reported in Table 3 and are 
not additive. 
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IPCC 
Category 
Code 

Category Description 106 Metric Tons Carbon (MMT C) 

3C1 
Biomass Burning2 
Forest Land3 (3C1a), Grassland (3C1c) and 
Other Land4 (3C1d) 

Above-Ground Live 
(AGL) 

Total1 (Live & 
Dead) 

-3.5 -9.4 

3D1 

Harvest, Thinning and Clearcut   

Gross stock change -1.4 -5.0 

Net stock change5 -0.3 -1.2 
1 Includes Above-Ground Live (AGL) and Below-Ground Live (tree, understory, shrub, grass/herbaceous) Standing Dead, 
Down Dead, Litter - Not including soil. 

2 Includes Wildfire, Rx Fire and WFU. 

3 IPCC definition of Forest Land includes land dominated by shrubs. 

4 IPCC definition of Other Land includes sparsely vegetated, barren, rock/ice, and lands that do not fall within the other 5 
categories. 

5 Accounts for 1.04 MMT post-harvest C persisting as wood product. 

 

Table 5b. 2012 – 2014 stock change attribution by IPCC category.  

Note: Quantities reported here are subsumed within the stock changes reported in Table 3b and are 
not additive. 

IPCC 
Category 
Code 

Category Description 106 Metric Tons Carbon (MMT C) 

3C1 
Biomass Burning2 
Forest Land3 (3C1a), Grassland (3C1c) and 
Other Land4 (3C1d) 

Above-Ground Live 
(AGL) 

Total1 (Live & 
Dead) 

-8.3 -19.7 

3D1 

Harvest, Thinning and Clearcut   

Gross stock change5 -1.77 -6.49 

Net stock change6 -0.43 -5.15 
1 Includes Above-Ground Live (AGL) and Below-Ground Live (tree, understory, shrub, grass/herbaceous) Standing Dead, 
Down Dead, Litter - Not including soil. 

2 Includes Wildfire, Rx Fire and WFU. 

3 IPCC definition of Forest Land includes land dominated by shrubs. 

4 IPCC definition of Other Land includes sparsely vegetated, barren, rock/ice, and lands that do not fall within the other 5 
categories. 

3 Draft estimate, based on harvest acres reported for 2012-2014 (2017 Forest and Range Assessment). 

6 Accounts for 1.35 MMT post-harvest C persisting as wood product. 

 

 

Assessing stock changes associated with harvest activities behooves an evaluation between reported 
harvest data and LANDFIRE-based harvest estimates adjusted for land ownership type. Taking into 
account variation in biomass removal with respect to activity and ownership type (FRAP, 2014), Saah 
et al. (2016) derived harvest volumes from AGL stock change estimates associated with the Thinning, 
Clearcut and Harvest categories. Using methods developed by Saah and coworkers (2016) AGL stock 
changes in 2010-2012 associated with harvest activities translated to a harvest volume of 
approximately 2,522 million board-feet (mbf), representing 79% of the 2010-2012 harvest volume 



 

December 2018 Draft 
31 

reported by the state Board of Equalization (BoE) timber yield tax program. The ostensive harvest 
volume underestimate may be attributed to limitations from having the LANDFIRE Harvest category 
serve to represent a variety of silvicultural activities which embody different stock change outcomes 
(e.g. group selection, variable retention, seed tree removal, and seed tree step), harvests undetected 
by LANDFIRE, and uncertainties associated with conversions between biomass densities and wood 
volumes. 

 

2E – Further Development 

 

2E.1 – Forests and Other Lands: LANDFIRE Products 

LANDFIRE geospatial products are evolving as the consortium expands its resource management 
capacity beyond wildfires. LANDFIRE is co-funded by two federal agencies (US Department of 
Agriculture and US Department of the Interior) and has constituents among analysts and researchers 
in federal and state agencies, academia, and non-governmental organizations. With each update, 
LANDFIRE endeavors to respond to requests for a variety of improvements. LANDFIRE vegetation 
mapping also abides by guidelines in the federal National Vegetation Classification System (NVCS). 
As a result, LANDFIRE has become a central clearinghouse of national vegetation mapping data. 
Consequently, continual modification of the Existing Vegetation Type (EVT) product is likely as user 
needs and standards change. The major source of uncertainty in ARB’s land carbon quantification 
method for forests and other lands is EVT classification (Battles, et al., 2013) (Gonzalez, et al., 2015). 
Given that LANDFIRE can assign generalized vegetation classes with greater accuracy (NatureServe, 
2012) new regression equations for estimating carbon densities as functions of height class, cover 
class and subclass (e.g., closed-canopy, evergreen forest, sparse canopy mixed forests, open canopy 
deciduous forest, etc.) may afford greater consistency and reduce uncertainty (Saah, et al., 2016). 
Continuous improvement in classification and mapping consistency will help reduce errors in 
mapping transitions between land categories. Moreover, the increasing volume of FIA data affords 
opportunities for updating inputs to the LANDFIRE-C tool, and for improving uncertainty estimates 
for live and dead carbon pools. 

2E.2 – Stock Change Attribution: Fire 

By default, the stock change estimates attributed to wildfire assume complete transfer (oxidation) of 
carbon to the atmosphere. Fires also emit varying amounts of CH4 and N2O, depending on combustion 
conditions. However, not all ecosystem carbon is immediately emitted by fire: post-fire land carbon 
stocks in the form of residual unburned dead fuels and killed trees represent carbon pools of varying 
persistence. Accounting for these post-fire pools (and for other gases) could serve to better represent 
the timing and magnitudes of losses associated with wildfire (Hurteau & Brooks, 2011).  

2E.3 – Advances in Methods 

The approach to land carbon quantification described in the Methodology combines temporal 
geospatial data (LANDFIRE products) with ground-based tabular data. Airborne or space-based 
active sensor technologies such as Light Detection and Ranging (LiDAR) and Synthetic Aperture 
Radar (SAR) provide information on the three-dimensional structure of forests and other vegetation, 
and have been used in combination with ground-based data to generate high fidelity geospatially 
explicit estimates of above-ground biomass over large areas (Chen, et al., 2012) (Gonzalez, et al., 
2010) (Zhang, et al., 2014). Other efforts to interpret processes linking land carbon, disturbance and 
climate integrate remotely sensed and ground-based data (Kennedy, et al., 2017) with process 
models (Liu, et al., 2011) (Liu, et al., 2008) (Golinkoff, 2010) (Nemani, et al., 2002) (Potter, et al., 
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1993) (Running & Hunt Jr., 1993). Advances in remote sensing and analysis tools are rapid and will 
afford for future improvements in ARB land carbon quantification and monitoring at varieties of 
spatial and temporal scales. 

  



 

December 2018 Draft 
33 

 

3 – Cropland Woody Biomass 
 

3A – Background 

Growth from orchard trees removes CO2 from the atmosphere. The rate of CO2 uptake by the land 
from the atmosphere is largely governed by type of crop in production, crop age (maturity) and 
planting density (Arneth, et al., 2017). Lands used to grow crops may also undergo land use change 
resulting in a shift among carbon pools.  For instance, urban development on existing orchard lands 
removes the established trees and its associated above and belowground carbon. Conversely, 
conversion of annual crops to woody perennials could store carbon for many decades as above and 
belowground carbon without frequent disruption to the soil. Differences in agriculture practices, 
particularly the use of tillage can lead to increased oxidation of soil organic carbon (SOC) in the form 
of CO2 (West & Marland, 2002). Tracking changes of land use practices over time via remote sensing 
coupled with land cover datasets can inform new tools aimed at quantifying carbon stocks of different 
crop types and allow a statewide GHG inventory to be created (Sobrino & Raissouni, 2000) 
(Kroodsma & Field, 2006).   

Situated between the Sierra Nevada Mountains to the east and coastal range to the west and 
extending approximately 60 miles across and 450 miles long, California’s Central Valley contains the 
majority of the State’s agricultural land (Figure 8). The Central Valley is home to various types of 
annual crops including alfalfa, rice and wheat. However, perennial crop orchards consisting of 
almonds, walnuts and pistachios is increasing (USDA, 2012). California’s coastal valleys, which 
include the Salinas and Napa Valleys, experience a cooler climate (average daily maximum July 
temperature 22.9 -28.1 °C), more suitable for vineyards compared to the warmer Central Valley. 
Here, the average daily maximum July temperature is 34.6 °C (USDA, 2010) (PRISM, 2017). 
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Figure 8. Broad vegetation land cover types of California with agriculture lands highlighted in 
yellow, shrugs and herbaceous plants in light green, and forest in dark green (USDA, 2010)  

(LANDFIRE, 2010). 
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Cultivated lands play a significant role in the US carbon cycle and how they are managed determines 
the amount and length of time carbon is stored (Burke, et al., 1989) (Houghton, et al., 1999) (Conant, 
et al., 2017) (Lal, 2004). Carbon on these lands are quantified with newly developed computer 
models by processing large amounts of remote sensing data using machine learning algorithms that 
provide an in-depth landscape view of the carbon cycle   (Zomer, et al., 2016) (Schimel, et al., 2014) 
(Vos, et al., 2017). As of 2007 the United States contains 408 million acres of cropland, 18% of the 
Country’s land area (USDA, 2018a). United States cropland area has fluctuated during the 20th 
century. From 1945 to 2002 cropland area declined 2% and has remain relatively steady at 442 
million acres, while urban land area had quadrupled to 60 million acres (Lubowski, et al., 2006). 
Market forces, farm programs and technologies that affect supply often drive changes in cropland 
type and area (USDA, 2018c).  

Despite the relatively level trend in cropland area over the past century, California orchards and 
vineyards have increased 30% from 1980 to 2000, largely displacing annual crops and consequently 
adding more woody carbon to the landscape (Kroodsma & Field, 2006). Conversion of crop types lead 
to differing carbon sequestration rates. Kroodsma and Field (2006) found that annual crops that 
were replaced by vineyards sequestered 68 g C m-2 yr-1, where annual crops that were converted to 
orchards sequestered 85 g C m-2 yr-1. This creates a shift in how carbon is stored on the landscape 
with a greater portion being stored in the aboveground live (AGL) pool. Farming practices involving 
orchard trees are inherently less disruptive to the soil by decreasing tillage thereby not exposing SOC 
to atmospheric oxygen and promoting heterotrophic respiration. The commercial lifespan of an 
orchard represents the length of time for which carbon is accumulated and stored in the form of live 
biomass. Depending on the species, orchard trees remain economically viable and are kept in 
production for many decades. Nut trees, such as almonds, walnuts and pistachios have a commercial 
lifespan of about 25, 35, 60 years, respectively (Marvinney, et al., 2014).  

CARB staff developed a method called the Diameter Estimated Method for Even-aged Trees Examined 
Remotely (DEMETER) to fill the cropland carbon accounting gap for California. The DEMETER’s 
model processes spatial cropland data provided by the USDA Cropscape program and CARB staff 
calibrated it against the National Agriculture and Statistics Service census inventory database (USDA, 
2012). DEMETER meets the IPCC tier 3 level standards by providing species-specific biomass 
estimates for a specific region (IPCC, 2006e), while additionally incorporating several datasets from 
federal, state and private sources. 

 

3B – Methodology  

 CARB staff evaluated various remote sensing platforms and cropland inventory data to develop an 
above and below ground carbon inventory for croplands that can be refreshed on an annual basis. 
CARB staff extracted tree diameter information from ground-based and aerial imagery to inform 
allometric equations provided by the USDA for estimating tree biomass. Since biomass accumulates 
with orchard age, CARB staff randomly sampled cloud free imagery from Landsat 1-5 MSS/ TM, 7 
ETM+, 8 OLI time series from 1972 to 2017 to develop an age distribution for each orchard type.  

Photo interpretation of the Landsat time series was conducted to record disturbance (tree planting) 
of the orchard.  CARB staff then derived regression equations by species to estimate carbon values 
based on crop type and age class to produce a map of above and belowground carbon. CARB staff 
summarized data products by year and by orchard type with a Monte Carlo analysis to test the 
sensitivity of the DEMETERs model (Figure 9). 
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Figure 9. Overview of data, methods, products, and accuracy assessment from the DEMETER 
model. Data sources include tabulated crop information from NASS (USDA-NASS 2012) land cover 
classification, high and moderate resolution imagery from Digital Globe, Landsat, and Google Street 

View ground-based imagery.  

 CARB staff used Cropscape Cropland Data Layer (CDL) to delineate the analysis area into different 
orchard and vineyard types, thereby quantifying the spatial range of almond, walnut, pistachio, 
orange and vineyard crop types. Cropscape CDL classifies crop types onto a 30 m grid. Data used in 
CDL classification include Landsat TM 5, ETM+ 7, and National Land Cover Database (NLCD) derived 
products such as the National Elevation Dataset (NED), percent canopy cover, and percent 
impervious products (Boryan, et al., 2011) (Han, et al., 2012). A supervised decision tree 
classification was used to derive the CDL dataset (Boryan, et al., 2011) (Johnson & Mueller, 2010). 

The National Agriculture and Statistics Service (NASS) collects, maintains and provides crop 
information for the entire United States relevant to the production, supply, consumption and costs 
through two inventory programs known as “census” and “survey”.  The census dataset is collected 
every 5 years and is the more detailed and comprehensive of the two datasets. The survey dataset is 
collected annually with information provided by the farm operators with a total sample size of 65,000 
to 81,000 nationwide (USDA, 2012). From NASS, CARB staff extracted crop acreage data for the five 
most prevalent perennial crops in California: grapes, almonds, walnuts, pistachios and oranges. 
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Together these five perennial crops make up 2.6 million acres or 84% of all perennial plants found 
on croplands in California (Table 7) (USDA, 2012). The 44 other perennial crops listed in NASS (i.e. 
cherries, lemons, plums, etc.) occupied approximately 16% of the total perennial cropland area.  
CARB staff did not use the annual survey dataset in the analysis as the two datasets are not directly 
comparable and the survey data is the more robust of the two (USDA, 2012).   

 

Table 7. NASS 2012 dataset showing land are of bearing and non-bearing of the top 5 woody 
perennial crops in California 

Crop Area (ha) Area (%) 

Grapes 380,477 30.0 

Almonds 378,707 29.8 

Walnuts 133,187 10.5 

Pistachios 92,369 7.3 

Oranges 78,140 6.2 

Other 207,407 16.3 

Total 1,270,286 100 

 

 To estimate above and belowground biomass of an individual tree, foresters often use 
diameter at breast height (DBH) within an allometric equation (Ketterings, et al., 2001) (Smith & 
Wood, 2006) (Gonzalez, et al., 2015). When estimating live biomass remotely CARB staff needed to 
determine a tree’s DBH without being present in the field, requiring CARB staff to take advantage of 
high resolution imagery (< 1 m). Such data was provided by WorldView in Google Earth Pro and 
coupled with ground base photography available from Google Street View that were acquired the 
same year. The sub-meter WorldView imagery is used to determine the height of the tree by 
measuring the length of the tree’s shadow on flat ground starting from the base (or tree’s center) to 
the furthest edge of the shadow cast by the tree (Figure 10). The sun’s altitude angle is determined 
by selecting a nearby utility pole and is assumed to be positioned at a right angle with respect to the 
ground, while the azimuth of the shadow cast by the utility pole is measured in Google Earth (Figure 
10).  
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Figure 10. a) World View image of an almond tree and utility pole, b) Masked tree canopy (black) 
and tree canopy shadow cast at a length of 3.98 m (gray). Below is the utility pole (black) and 

shadow cast at 138.7 degrees form north (gray), c) Google Street view image of the same almond 
tree measured in figures 11 a & b, d) Masked almond tree from figure c measuring the height (868 

px) and DBH (45 px). 
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A nearby utility pole instead of the tree is used to measure the sun’s azimuth due to its straight and 
often perpendicular stance relative to the ground and absence of foliage, resulting in casting a distinct 
shadow that is easily measured.  With the azimuth angle, location and photo acquisition date, the 
sun’s altitude can be determined with a sun angle calculator (US Navy, 2011). The height of the tree 
(𝐻𝑡𝑟𝑒𝑒) is determine by measuring the shadow length (𝐿𝑠ℎ𝑎𝑑𝑜𝑤) and multiplying by the tangent of the 
Sun’s altitude (𝜃) (Equation 1).  

𝐻𝑡𝑟𝑒𝑒 = 𝐿𝑠ℎ𝑎𝑑𝑜𝑤TAN(𝜃)     (1) 

To determine a tree’s DBH (𝐷𝑡𝑟𝑒𝑒) remotely, Google Street View is used to measure ratio between 

DBH and height ( 
𝐷𝑝𝑖𝑥𝑒𝑙𝑠

𝐻𝑝𝑖𝑥𝑒𝑙𝑠
 ) (Figure 10b) and then multiplied by the height of the tree (𝐻𝑡𝑟𝑒𝑒) 

(Equation 2). To ensure the same tree is selected on Google Street View as the aerial imagery, trees 
near the roadway are selected and counted form a cross street that is observed with both sets of data.  

𝐷𝑡𝑟𝑒𝑒 =
𝐷𝑝𝑖𝑥𝑒𝑙𝑠

𝐻𝑝𝑖𝑥𝑒𝑙𝑠
𝑥 𝐻𝑡𝑟𝑒𝑒      (2) 

To estimate tree biomass, CARB staff used the DBH measurements with the USDA’s component ratio 
method (Woudenberg, et al., 2010) that is comprised of species-specific allometric equations 
capturing the top, bole, foliage, stump and roots. Equation 3 estimates the aboveground biomass 
(𝐵𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑) in kg stored by knowing the tree’s DBH (𝐷𝑡𝑟𝑒𝑒) in cm for the four common orchard 

types (almonds, walnuts, pistachios and oranges) in California. 

𝐵𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 = (𝑒−2.48+2.4835 ln(𝐷𝑡𝑟𝑒𝑒))   (3) 

To estimate the belowground biomass (𝐵𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑) in kg stored in the trees roots Equation 4 is 

used by knowing the tree’s DBH (𝐷𝑡𝑟𝑒𝑒) in cm. 

𝐵𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑 = (𝑒−2.48+2.4835 ln(𝐷𝑡𝑟𝑒𝑒))    (4) 

Carbon storage was derived by multiplying the carbon fraction (0.47g carbon (g biomass)-1 
(McGroddy, et al., 2004)) by the above and belowground biomass estimate. 

  The USDA’s allometric equations provide biomass storage estimates by DBH size, but not by 
tree age, which is needed for generating a carbon density map of perennial crops. To estimate the 
carbon storage by tree age CARB staff measured and aged the trees at the University of California 
Davis’ Wolfskill Experimental Orchards located west of the main campus in Davis, CA. The 
experimental orchard lands consists of hundreds of hectares with many common nut and fruit trees 
such as peach, cherry, almond, prune, pistachios, walnut, apricot and avocado while spanning various 
age classes and DBH sizes. To measure DBH of individual trees CARB staff used a tree diameter tape 
(commonly used in forestry applications) and an Opti-Logic hypsometer for measuring tree heights. 
Tree age was provided by UC staff and also determined through photo interpretation from imagery 
available on Google Earth Pro and the Landsat imagery time series. Orchard trees were sampled and 
measured in groups of three to record DBH and heights measurements and then averaged to 
minimize bias in the trees position within the orchard that may result in differences in growing 
conditions.  

To scale up the carbon storage estimates from the level of individual trees to orchard lands CARB 
staff sampled WorldView satellite imagery in Google Earth Pro and counted the number of trees per 
hectare that were present for each orchard type across the Central Valley of California. This was done 
by randomly selecting orchards of different age classes from the Cropscape CDL database and then 
measuring out fixed 1 hectare rectangular plots and counting the number of trees present (Figure 
11).  
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Figure 11. Sampling of tree per hectare. The sampling unit is 1 hectare (100 m x 100 m) outlined in 
black. Trees were counted within the fixed sample unit to estimate orchard tree density by type and 

age.  

In developing a perennial cropland map, CARB staff used Google Earth Engine 
(https://earthengine.google.com/) to process a time series of Landsat imagery (1972-2018) in order 
to derive age-class estimates of orchard trees statewide. To run the model CARB staff utilized several 
Landsat datasets from satellites 1-5, 7, and 8. Google Earth Engine did not provide NDVI rasters 
derived for the Landsat 1-3 and consequently CARB staff calculated NDVI using bands 5 (red) and 6 
(NIR) with the “LANDSAT/LM01/C01/T2”, “LANDSAT/LM02/C01/T2” and 
“LANDSAT/LM03/C01/T2” with cloud free collections  (Huang et al. 2010). NDVI values were 
provided by Google Earth Engine (Huang et al. 2010) from 1983 to 2011 using the 
“LANDSAT/LT4_L1T_8DAY_NDVI” and “LANDSAT/LT5_L1T_8DAY_NDVI” derived from Landsat 4 
and 5. For the year 2012 CARB staff used NDVI estimates provided from Landsat 7 (Huang et al. 2010) 
with the “LANDSAT/LE7_L1T_8DAY_NDVI” collection. For year 2013 and after CARB staff used 

https://earthengine.google.com/
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Landsat 8 NDVI estimates using the Google Earth Engine collection from 2013 to 2016 
“LANDSAT/LC8_L1T_8DAY_NDVI” and “LANDSAT/LC08/C01/T1_SR” collection for years 2017 and 
2018 for estimating NDVI. All imagery underwent level L1T processing with orthorectification 
(Chander, et al., 2009). With the Landsat NDVI collection, CARB staff calculated the median pixel 
value for each year to reduce the number of images for analysis (Figure 12). The imagery was then 
masked to the extent of the orchard as defined by Cropscape 2010, allowing CARB staff to estimate 
the year in which the orchards trees had been planted (Figure 13).  

To be able to estimate tree age of all orchard lands in California, CARB staff identified supervised 
classification training sites through photo interpretation of Landsat and Google Earth imagery, 
capturing different orchard types and ages. These training sites contained unique pixel information 
that was used to develop age class signatures to inform a random forest machine learning algorithm 
and produce an age class map of tree orchards. With the orchard age class and the Cropscape CDL 
crop classification layers CARB staff produced an orchard carbon density layer spanning the state of 
California.  Knowing the orchard type and age for each 30 m pixel CARB staff derived a carbon 
estimate from an exponential regression equation that CARB staff derived from field plot and Street 
View imagery, depicting the relationship between carbon storage, orchard type and age. 
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Figure 12. NDVI time series (1972 – 2018) of a small representative region 60km south-east of 
Fresno, CA of California perennial crops.  Extent of example time series above is (36.42888, -

119.23805, 36.41755, -119.22466). 

 

 

 

 

 

 



 

December 2018 Draft 
43 

 

Figure 13. Median NDVI time series for the months of June – August from 1972 to 2018. NDVI 
values of selected orchards are presented for each orchard type, Walnut (38.627418°, -

121.566367°), almond (38.945792, -122.020383), pistachio (36.900523, -119.878285) and orange 
(36.42349, -119.24844). The shift in NDVI from low to high indicates growth in orchard crops. 

Estimates of uncertainty in the above and belowground carbon of perennial croplands were 
estimated using a Monte Carlo analysis incorporating several sources of error: (1) estimate of tree 
height, (2) estimate of tree diameter, (3) estimate of orchard tree density, (4) statistical uncertainty 
in allomteric equations, (5) variation in correlation between age vs DBH, (6) statistical uncertainty 
in the carbon fraction, (7) spatial uncertainty in area estimates by orchard type. For the first three 
sources CARB staff developed error estimating Equations 5 – 7 for tree height (�̂�), tree diameter (�̂�), 
and tree density(�̂�): 

�̂� = 𝐻𝑠ℎ𝑎𝑑𝑜𝑤 + 𝑋ℎ𝑒𝑖𝑔ℎ𝑡𝑆𝐸ℎ𝑒𝑖𝑔ℎ𝑡     (5) 

Where, 𝐻𝑠ℎ𝑎𝑑𝑜𝑤is the length of the tree’s shadow (m), 𝑋ℎ𝑒𝑖𝑔ℎ𝑡 is a random number from a normal 

distribution with a mean = 0 and a standard deviation = 1 and  𝑆𝐸ℎ𝑒𝑖𝑔ℎ𝑡 is the standard error of the 

height. 
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�̂� = 𝐷𝑡𝑟𝑒𝑒 + 𝑋𝑑𝑏ℎ𝑆𝐸𝑑𝑏ℎ     (6) 

Where, 𝐷𝑡𝑟𝑒𝑒is the diameter (cm) of a tree. 𝑋𝑑𝑏ℎ is a random number from a normal distribution with 
a mean = 0 and a standard deviation = 1 and  𝑆𝐸𝑑𝑏ℎ is the standard error of dbh. 

�̂� = 𝑇𝑡𝑝ℎ + 𝑋𝑡𝑝ℎ𝑆𝐸𝑡𝑝ℎ     (7) 

Where, 𝑇𝑡𝑝ℎ is the number of trees per hectare. 𝑋𝑡𝑝ℎ is a random number from a normal distribution 

with a mean = 0 and a standard deviation = 1 and  𝑆𝐸𝑡𝑝ℎ is the standard error of tree per hectare. 

Individual tree aboveground  (�̂�𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑) and belowground (�̂�𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑) biomass estimates 

(kg) were calculated with standard errors provided by the USDA (Jenkins) and are shown in 
Equations 8 and 9:  

�̂�𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 = (𝑒−2.48+2.4835 ln(�̂�)) + 𝑋𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑𝑆𝐸𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑  (8) 

�̂�𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑 = (𝑒−1.691+0.816 ln(�̂�)) + 𝑋𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑𝑆𝐸𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑  (9) 

The estimates of aboveground and belowground biomass were added together for a combined 
biomass estimate for each tree that was sampled. A power regression analysis was conducted 
comparing age vs biomass from individually sampled trees for each orchard to scale up individual 
tree estimates to statewide estimates of biomass by orchard type and age class (Equation 10 and 
Table 8).    

�̂�𝑎𝑔𝑒 = 𝑏0𝑦𝑏1 + 𝑋𝑎𝑔𝑒𝑆𝐸𝑎𝑔𝑒    (10) 

Where, �̂�𝑎𝑔𝑒 is the biomass estimate (kg) for a given tree age and y is the age of the tree. 𝑋𝑎𝑔𝑒 is a 

random number from a normal distribution with a mean = 0 and a standard deviation = 1 and  𝑆𝐸𝑎𝑔𝑒 

is the standard error of the age. 

 

Table 8. The coefficients and standard error by orchard type for equation 10. 

 

Orchard Type 𝒃𝟎 𝒃𝟏 𝑺𝑬𝒂𝒈𝒆 

Almond 13.72 1.38 0.048 

Walnut 12.56 1.49 0.058 

Pistachio 2.81 1.74 0.067 

Orange 2.52 1.37 0.046 

 

�̂�𝑜𝑟𝑐ℎ𝑎𝑟𝑑 𝑡𝑦𝑝𝑒 =  ∑ (𝑓𝑐 + 𝑋𝑓𝑐𝑆𝐸𝑓𝑐)(�̂�𝑎𝑔𝑒)(𝐴𝑎𝑟𝑒𝑎 + 𝑋𝑎𝑟𝑒𝑎𝑆𝐸𝑎𝑟𝑒𝑎)

𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖=1

 

 (11) 

Where, �̂�𝑜𝑟𝑐ℎ𝑎𝑟𝑑 𝑡𝑦𝑝𝑒 is the California statewide carbon storage for a given orchard type.  𝑓𝑐, is the 

carbon fraction, 𝑋𝑓𝑐  is a random number from a normal distribution with a mean = 0 and a standard 

deviation = 1 and  𝑆𝐸𝑓𝑐  is the standard error of the carbon fraction (McGroddy, et al., 2004). 𝐴𝑎𝑟𝑒𝑎 is 

the land area for a given orchard type (USDA, 2012).  
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3C – Results  

Orchard trees were found to exponentially grow and accumulate carbon in the bole, branches, leaves, 
and roots. Among the four orchard species CARB staff found walnut trees to store the most carbon 
with the oldest trees reaching 1662 kg per tree, while finding individual orange trees to store the 
least carbon and slowest growth rates (Figure 14). At 38 years of age walnuts, almond, pistachio and 
orange store 1333, 976, 740, 172 kg respectively. CARB staff noticed walnut trees to have the steepest 
curve accumulating the most carbon while orange trees accumulating the least carbon over time. 

 

Figure 14. A comparison of carbon accumulation by age for four orchard types (almond, walnut, 
orange, and pistachio). Where r2 is the least-squares goodness-of-fit, m is the number orchards 

sampled and n is the sample size of individual trees. 

 

Tree densities (trees ha-1) for all orchard types were found to decline with age. The highest densities 
observed were of young recently planted orange trees, while the lowest tree density found were 
among the oldest walnut tree orchards. Tree density among orange orchards also declined the most 
quickly compared to other orchard types with densities dropping from 418 to 214 trees per ha over 
38 years (Figure 15). Walnuts declined from about 170 to 70 trees per ha during the same period of 
time. Almond and pistachio orchard densities were more similar and declined from 268 to 142 trees 
ha-1 and 356 to 213 trees ha-1 respectively.  
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Figure 15. Orchard tree density by age for almond, walnut, oranges and pistachio.   All orchard 
species show a decline in trees per hectare with increase in age. 

The average above and belowground carbon storage for all California perennial croplands in 1997 
was 29.7 + 3.1 Tg and by 2012 the carbon grew to 42.7 + 3.7 Tg. Statewide, almonds orchards were 
found to store the most carbon with 19.2 + 4.0 Tg with an increase in land area going into almond 
production (2,299 to 3,787 km2) from 1997 to 2012. Walnut orchards were second in terms of 
statewide carbon storage (14.8 + 3.9 Tg in 2012) while only occupying approximately a third of the 
land area as almonds. Pistachio, orange and grape orchards stored the least amount of carbon in 
California with each having less than 4 Tg (Figure 16 and Table 9).
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Table 9. Above and belowground carbon storage for grapes, almond, walnut, pistachio, and orange orchards in California from 1997 – 1 
2012. 2 

  1997       2002       2007       2012     

 

Carbon 
Tg 

95% 
CI Tg 

Area 
km2  

Carbon 
Tg 

95% 
CI Tg 

Area 
km2  

Carbon 
Tg 

95% 
CI Tg 

Area 
km2  

Carbon 
Tg 

95% 
CI Tg 

Area 
km2 

Total 29.7 3.1 8039   34.8 3.8 9101   35.6 3.7 9254   42.7 3.7 10629 

                

Grapes 3.4 0.4 3400  3.6 0.5 3605  3.5 0.4 3514  3.8 0.4 3805 

Almond  11.6 2.9 2299  14.3 3.6 2818  16.2 4.0 3198  19.2 4.0 3787 

Walnut 11.2 3.6 1014  13.0 4.3 1173  11.9 3.9 1070  14.8 3.9 1332 

Pistachio 1.4 0.4 390  1.7 0.5 492  2.2 0.6 613  3.3 0.6 924 

Orange 2.1 0.5 935   2.2 0.5 1013   1.9 0.5 859   1.7 0.5 781 

3 
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Figure 16. Statewide totals of above and below ground carbon every 5 years from (1997-2012). 
Almond and walnuts were found to store the most carbon while orange and pistachios had the 

least. The total carbon among orchards and vineyards has grown from about 29.7 Tg C in 1997 to 
42.7 Tg CO2e in 2012. 

Estimates of orchard age and carbon density values for almond, walnut, orange and pistachio were 
computed and mapped in California for the year 2010. As an orchard matures the tree canopy begins 
to fill in with dark green foliage while newly planted orchards consist of little foliage with bare 
ground that is tan in color (Figure 17a). Generally, trees from a given orchard were found to be of 
even-age, however CARB staff did observe canopy gaps within individual orchards resulting from 
dead trees that had been replanted. The Cropscape CDL provided spatial information of orchard 
types (Figure 17b) and were used to mask the Landsat time series for determining orchard age class 
(Figure 17c). Carbon densities estimates varied based on orchard type, tree density and age (Figure 
17d).  
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Figure 17. Orchard carbon density a) NAIP (1 m) imagery foliage density in dark green a result of 
orchard age and tree density. b) Cropscape 2010 (30 m) classification with dark green classified as 
almond and light green for developed (roads).  C) Orchard age (years) (30 m) derived from Landsat 

imagery time series. D) Orchard carbon density map (Mg C ha-1) (30 m) resulting from orchard 
type and age.  

 

By graphing a one-to-one line (n=45) comparing ground truth orchard age with the random forest 
classification age CARB staff found the slope to be 0.90 with an R2 of 0.87 (Figure 18). Overall CARB 
staff found there to be a slight bias at under predicting the true age of the perennial crop.  By looking 
at perennial crop age by land area were found California to be diverse with broad distribution 
spanning a wide range of age classes among all crop types (Figure 19).  
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Figure 18. The relationship between ground truth and random forest estimates of perennial crop 
age. The solid line is the linear regression fit of random sampled age estimates (n = 45) with a slope 

of 0.90.  The dotted line is 1:1 line with a slope of 1 and an intercept of 0. Comparison of the two 
lines show a slight over prediction of age in young orchard lands with a slight under prediction of 

age in older orchard lands. 
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Figure 19. Distribution of age classes by land area for perennial crop types that include almond, 
walnut, pistachio, orange and grape. Note for grapes that Cropscape CDL land area is about half 

compared to what is reported by NASS Census data for California (Table 7). Orchards 24 years and 
older were grouped together due to Landsat data availability. 
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3D – Uncertainty  

Despite there not being a directly comparable analysis of orchard land carbon storage statewide for 
California, our estimates of uncertainty were found to have the same order of magnitude as other 
publications studying natural and working land carbon pools (Gonzalez, et al., 2015) (Baccini, et al., 
2012). While we did account for planting density and periodic orchard thinning over time, CARB staff 
were unable to capture the loss in biomass resulting from pruning. While DEMETER was able to track 
the age of vineyards, an allometric equation or age dependent biomass estimate was not available 
from the scientific literature to spatially track carbon. As a result, the growth or biomass 
accumulation for grapes with age could not be estimated and a non-age specific carbon density value 
of 10.0 Mg C ha-1 measuring only the woody components (cordons, trunk and roots) of the crop were 
used (Morande, et al., 2017).  According to Kroodsma and Field’s (2006) 21-year (1980-2000) 
analysis, California’s agriculture lands sequestered a total of 14.5 Tg C statewide and when 
annualized this amounts to 0.69 Tg C yr-1. The statewide DEMETER model found carbon sequestered 
on agriculture lands to be 13.05 Tg C (1997-2012) or 0.87 Tg C yr-1. While the results are similar to 
Kroodsma and Field’s (2006) estimates of California agriculture carbon storage, they do span 
different time periods and only overlap by a few years, making them difficult to directly compare.  

Data quality and usability from other sources was strongly considered when building DEMETER in 
order to provide estimates of uncertainty for predicting carbon storage and annualized sequestration 
estimates. The NASS dataset has the most extensive survey and detailed information regarding 
acreage by crop type for the contiguous 48 states of the U.S.A. down to the county level. While this 
information is not provided in a spatial format directly, Cropscape CDL 
(https://nassgeodata.gmu.edu/CropScape/) provides a 30-m map of crop types built upon data from 
NASS, NLCD and Landsat, to create a carbon map for California’s agriculture lands on an annual basis 
(Han, et al., 2012). We found Cropscape CDL’s crop classification to have over 20% error, often 
making it a challenge to build a carbon map (particularly for vineyards) at a 30-m scale. For instance, 
significant sized regions of some crops such as vineyards in Sonoma County were unclassified or 
misclassified as natural lands. This reduced our confidence and ability in predicting carbon storage 
at fine scales (sub-county) while exceeding the NASS database resolution. More comprehensive 
remote sensing based land cover classification products for California agriculture lands are becoming 
available and may alleviate some of these challenges while serving to better inform CARB’s 
retrospective NWL inventory. New crop cover maps are being created for California and may 
substitute the Cropscape CDL classification products (LandIQ, 2018).   

 

3E – Discussion  

CARB’s DEMETER tool is intended to be used as a carbon accounting method for agriculture lands 
that can be refreshed annually and provide estimates of carbon stocks in California. The carbon 
storage map layers produced from DEMETER will be juxtaposed with CARB’s other carbon mapping 
tools that span of land cover types such as forests, shrubs, grasslands and wildlands (Gonzalez, et al., 
2015). The Municipal Estimated Tree Rate of Productivity on Lands in the State (METROPOLIS) tool 
developed by Bjorkman et al. (2015) and McPherson et al. (2017) is used to quantify and track carbon 
in the settlements IPCC land use category.  

Other research has estimated carbon in orchard tree biomass that include almonds, walnuts and 
pistachios using life cycle assessment (LCA) models. Kendall (2012) devised the Time Adjust 
Warming Potential (TAWP) approach with an LCA that uses relative cumulative radiative forcing 
(CRF) and captures the difference in the emission or removal of GHGs at a particular point in time to 
that of an emission of CO2 today. Marvinney et al. (2014) applied the TAWP method to run a business-
as-usual scenario that included total carbon storage time (orchard lifespan) and found the average 

https://nassgeodata.gmu.edu/CropScape/
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storage density to be 187.4, 981.3, 356.4 kg CO2e ha-1 for almond, walnut and pistachio respectively. 
When considering the LCA with chemical inputs, mechanized operations and soil processes for 
orchard lands, Marvinney (2014) found the mean annual greenhouse gas (GHG) footprints to be 
4260, 3480, 4050 kg CO2e ha-1 for almond, walnut and pistachio respectively. While the DEMETER 
approach leverages remote sensing data to measure land use change, age class and crop type to 
estimate carbon storage, it does not look at the LCA. However, the State’s anthropogenic GHG 
inventory maintained by the California Air Resources Board (CARB) does track many aspects of the 
LCA through quantification of GHG emissions resulting from fertilizer use and mechanized operation. 
CARB’s GHG inventory also includes soil carbon fluxes that are modeled separately from the 
DEMETER model.  

The observed decline in tree density with orchard age across all major orchard types likely resulted 
from mortality of individual trees over several decades. Replanting or replacing dead tree with young 
seedlings was observed from the World-View imagery and was most prevalent in younger orchards 
where older orchards consisted of gaps and lower number of trees per area.  In the case of young 
orange orchards the densities were found to be quiet high (438 tree ha-1) and are likely due to the 
tree’s relatively small size throughout its life when compared to the nut trees CARB staff studied. 
While the 30m analysis did capture some intra-variation in orchard age class, CARB staff found the 
majority of the orchards to be of even-age. The maximum age, CARB staff found for a walnut orchard 
in 2010 was 38 years old, which was eventually harvested in 2018. Almond trees typically have a 
commercial lifespan of 25-30 years (Almond Board 2016) with walnuts and pistachio reaching 35 
and 60 years respectively (Marvinney, et al., 2014). 

 Future climate change in California with rising temperatures and increasing drought has been 
predicted under many future climates scenarios and may reduce the extent where orchard trees can 
be commercially grown. According to Lobell et al. (2006) California crop yields of almonds, walnuts, 
avocados and table grapes are expected to decline through 2050 and while opportunities for 
expansion to cooler regions are possible, they are likely to be limited by non-climatic constraints. 
Given the rather long lifespan of orchards and vineyards (30-60 years), consideration of climate 
change should be a factor in selecting crop varieties and locations to plant in order ensure 
commercial viability and vigor. Many fruit and nut trees require locations that experience a winter 
chill to be commercially viable, which is likely to change with rising minimum daily temperatures. 
Under all global climate models (GCM) and emission scenarios, Luedeling et al. (2009) found that the 
lack of winter chill (chilling hours) in California would affect the ability to produce nuts on 50-75 
percent of orchards by 2050 and 90-100 percent by 2100. While sterile orchard trees may continue 
to accumulate carbon, there may be little incentive for land owner to grow or keep the crops if 
temperatures continue to rise and the looming threat of drought becomes more frequent.  
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4 – Urban Forest 
 

4A – Background 

At 5 percent (21,538 km2), urban forest make up a relatively small portion of California while co-
located with 95 percent of the State’s population providing  unique greenhouse gas (GHG) and 
ecological benefits that promote human health.  Urban forest reduce greenhouse gas (GHG) by 
sequestering and storing atmospheric CO2 and reduce energy consumption by casting shade on 
residential and commercial buildings. In addition to sequestering atmospheric CO2, urban trees also 
remove several common types of air pollution (O3, PM10, NO2, SO2 and CO) through dry deposition 
and rainfall interception (Nowak, et al., 2006). Having trees within the urban landscape provides 
other benefits to residents, many of whom who plant urban trees to increase their property value 
and aesthetics and to minimize heat effects and reduce exposure to UV rays and noise pollution 
(Bjorkman, et al., 2015). Although modest compared to wildlands, the combined total effects and 
close proximity of urban trees to people provide a unique net GHG and human health benefit.  

To understand the composition and structure of urban trees in California, CARB staff started by 
looking at several field inventories. In general, all available urban forest inventories tend to be 
fragmented at the local level and not refreshed on a regular basis making it difficult to track changes 
in growth, planting and removal of trees. There are some existing urban forestry studies that capture 
the major urban centers of California and include Los Angeles, San Jose, Sacramento and parts of 
Sonoma County (McPherson, et al., 2013). Municipal street tree data record individual towns and 
cities, but vary in the level detail and information that is collected. The USDA Forest Service’s Urban 
FIA program collects and maintains tree inventory data across the country including several cities in 
California. While the urban FIA inventory plots are more sparsely distributed than many of the 
municipal datasets, the sampling design is well equipped to provide statewide estimates on urban 
trees capturing information of smaller towns and communities. With a combination of all three types 
of inventories (UFORE, Municipal and Urban FIA) estimates of captured and stored CO2e can be 
determined. 

Priority areas for urban forests improvement projects have been evaluated by the State of California 
(CalFire) and the federal government (USDA Forest Service). CalFire’s Fire Resource Assessment 
Program (FRAP) studies urban forest conditions and identifies areas for tree planting and 
maintenance based on the threat to property and is described in the California’s Forest and 
Rangelands Assessment (2010). The FRAP assessment utilized the National Land Cover Dataset 
(NLCD) to map tree canopy and prioritize tree planting needs. The USDA Forest Service published a 
report entitled “Urban and Community Forests of the Pacific Region” (Nowak & Greenfield, 2010) 
that provides information and identifies areas for urban tree planting and maintenance based on 
population density, tree canopy and carbon storage. The Forest Service also relies on the NLCD land 
cover map to estimate tree canopy cover along with census data for demographic information.   

CARB’s approach to estimating CO2e storage utilizes field inventory data following the Bjorkman et 
al.  (2015) method to establish a 2010 baseline coupled with remote sensing to track changes in CO2e 
storage over time. Bjorkman et al. (2015) found the CO2e stored in California urban trees to be 
102,995,988 metric tons in 2010. Since many of the urban forest inventories measure a large number 
of trees only once, CARB staff doesn’t have a way to track the growth of the individual tree through 
repeated measurements. What is more is that field inventories take time and relying solely on them 
would create a lag and constrain the ability in maintaining a current up-to-date inventory. 
Consequently, CARB relies on remote sensing imagery from the USDA’s National Agriculture Imagery 
Program (NAIP) to measure and record changes in canopy cover of urban areas for the entire state 
of California. Combining field tree inventories and biennial NAIP imagery, CARB staff track CO2e 
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storage of California urban trees with the CARB staff derived method called “Municipal Estimated 
Tree Rate Of Productivity on Lands in the State (METROPOLIS).” 

 

4B – Methodology 

CARB’s METROPOLIS estimates of CO2e storage (1995-2016) utilize several data sources and 
previously developed methods that span three major field inventories, urban forest growth models 
and high resolution remote sensing. Data used includes NAIP imagery and three field inventory plots: 
urban forest effects model (UFORE), urban forest inventory and analysis (FIA) and municipal (Figure 
20). To estimate biomass and establish a CO2e storage baseline, allometric equations found in forest 
growth models developed by the US Forest Service (iTree) are used. To track changes in the growth 
and losses of CO2e spatially and temporally, remote sensing image analysis is completed to observe 
statewide changes in urban forest over time.  To gauge the level of uncertainty of the method, CARB 
staff performed a Monte Carlo analysis to quantify sources of error in the estimates of CO2e.   

 

Figure 20. Overview of data, methods, products and accuracy of the METROPOLIS method in 
quantify carbon storage of urban forests. 
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The urban forest field data are drawn from three major datasets, which include the Urban Forest 
Effects Model (UFORE), the US Forest Service’s Forest Inventory and Analysis (FIA) and Municipal 
Inventories. All three inventory types were collected using different protocols and at different times 
(Nowak, et al., 2006)  (Bjorkman, et al., 2015). The UFORE protocol consists of 703 randomly located 
circular plots that are 0.04 ha in size capturing 1,913 trees within the urban boundary (Nowak, et al., 
2008) (McPherson, et al., 2013) (Table 10). The UFORE plots are located in the cities of Los Angeles, 
Sacramento and Santa Barbara. The FIA dataset consist of 682 plots and 1,890 trees throughout 35 
California counties with a plot size of 0.067 ha and a subplot of 0.0168 ha (Nowak, et al., 2008) 
(Bjorkman, et al., 2015). The municipal inventory consisted of 49 street tree inventories consisting 
of 908,304 trees from across California. All three urban tree inventories are important for 
determining the species composition, diameter at breast height (DBH) and height of trees. 

 

Table 10. Taken from Bjorkman et al. (2015). The number of urban plots and trees sampled by 
climate zone in California. Three inventory types exists (FIA, UFORE and Municipal) that have 

different sampling protocols. 

 

 

Estimating a tree’s biomass involves identifying the species and being able to measure the diameter 
of the main stem at breast height or 1.3 m above the ground. Each species will accumulate biomass 
differently and will have different wood densities relative to the diameter of the main stem. An 
allometric equation is often a species specific equation that estimates the total biomass of the main 
stem plus the branches and roots of the tree.  In general, many tree species are found to exponentially 
grow biomass with increasing diameter and age, but the rate of growth and biomass acquired do vary 
by species. All trees found in the field inventories were processed using allometric equations within 
i-Tree Streets (http://www.itreetools.org/index.php) to estimate biomass and calculate CO2e 
storage (Figure 21). Bjorkman et al. (2015) method and analysis establish a CO2e 2010 baseline 
estimate of all urban tree in California.    

 

 

 

 

http://www.itreetools.org/index.php
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Figure 21. An example of how two species accumulate biomass differently with respect to growth 
in DBH. The orange line (Silver Maple) and green line (Monterey Pine) depicts the dry biomass 

accumulation with respect to the DBH. iTree has over hundred allometric equations that were used 
for different urban tree species each have a different dry biomass accumulation rate. 

 

Tracking urban tree canopy cover with remote sensing is used to record growth and loss of urban 
trees. NAIP imagery is a 1 m product that is comprised of four bands (blue, green, red and near 
infrared). The near infrared band is particularly useful when studying live vegetation and often 
appears in contrast with the rest of the urban environment. Visible light is largely absorbed by most 
tree canopies particularly blue and red light where chlorophyll a & b are used for photosynthesis 
while reflecting mainly green light. CARB staff use near infrared light outside of the visible spectrum, 
which is highly reflective among live vegetation from other urban cover types such as bare ground, 
water and buildings (Figure 22a).  Difference in the spectral reflectance can also vary by tree type 
(Figure 22b), canopy density and tree health. 
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Figure 22. a) Generalized spectral reflectance for deciduous and coniferous trees. Live vegetation 
is more reflective in the near infrared region than the visible (blue, green and red) part of the 

electromagnetic spectrum (Taken from Lillesand et al. 2003). b) A comparison of spectral 
reflectance of three major land cover type (dry bare soil, vegetation and water). 

With the spectral information captured by the NAIP imagery the urban tree canopy can be delineated 
from the rest of the landscape and the area quantified. By having the computer display the green 
band as near infrared CARB staff can see the urban tree canopy clearly depicted from the rest of the 
urban landscape (Figure 23). To track changes in urban tree canopy cover, NAIP imagery spanning 
from 2005 to 2018 is compiled into a time series and then processed and analyzed.  
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Figure 23. NAIP false color image (bands: NIR, Red and Green) is used to identify the urban forest 
canopy from the rest of the urban landscape. 

 

Prior to mapping the urban tree canopy using a computer based machine learning algorithm, CARB 
staff employed a photogrammetric sampling approach to establish a best estimate of the State’s total 
urban tree canopy cover. The photogrammetric approach takes a 1 m NAIP imagery time series (2005 
– 2016) and randomly samples 2,500 points state-wide within the urban boundary according to the 
U.S. Census (2010) to determine the fraction of urban tree canopy cover (Figure 24).  For each time 
step an estimate of percent canopy cover, standard error and confidence intervals were computed. 
Plots that did not intercept the urban tree canopy largely consisted of building, roads, lakes, streams, 
turf grass, etc.  
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Figure 24. a) The map of California depicts a simple random sample locations (n = 2,500) used to 
track urban tree canopy cover through time (1995 – 2016). b) A point that intercepts bare ground 

of a baseball field. c) A second point that intercepts the urban tree canopy. 

To estimate the proportion of urban area that contained tree canopy cover (�̂�), CARB staff 
recorded the total of number of points that had intercept an individual tree’s crown (𝑥) and 
divide it by the total number of random sample points (𝑛) (Equation 12). The proportion of 
urban tree cover was estimated for Digital Orthophoto Quarter Quads (DOQQ) and NAIP 
imagery for the years 1995, 2005, 2009, 2010, 2012, 2014 and 2016.   

 

�̂� =
𝑥

𝑛
      (12) 

To quantify the uncertainty in the proportion estimate of urban tree canopy cover CARB staff 
calculated confidence intervals using an α = 0.05 and a critical value (z-score) = 1.96 
(Equation 13). 

�̂� ± 𝑧 √
𝑝(1−𝑝)

𝑛
       (13) 
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To track California net (growth – loss) CO2e urban forest storage (𝐶𝑌𝑒𝑎𝑟), CARB has expanded on the 
Bjorkman et al. (2015) method by developing METROPOLIS and quantifying the urban tree canopy 
cover over time. To do this, CARB staff compared the percent canopy cover for a given year 
(𝐶𝑎𝑛𝑜𝑝𝑦𝑦𝑒𝑎𝑟) relative to the 2010 canopy cover estimate (𝐶𝑎𝑛𝑜𝑝𝑦2010) using the baseline estimate 

of 103 Tg of CO2e (𝐶2010) (Bjorkman, et al., 2015) to determine whether net CO2e storage had 
increased or decreased from the 2010 baseline (Equation 14). CO2e storage of the urban forest was 
determined for each year that imagery was available (1995-2016).  

𝐶𝑌𝑒𝑎𝑟 = 𝐶2010 𝑥  
𝐶𝑎𝑛𝑜𝑝𝑦𝑦𝑒𝑎𝑟

𝐶𝑎𝑛𝑜𝑝𝑦2010
     (14) 

To provide regional urban forest storage estimates of CO2e in California CARB staff looked at six 
climate zones that were used by the Bjorkman et al. (2015) approach. Climate zones provide a “clean” 
way to parse urban tree inventory along physiographic gradients (i.e. precipitation, temperature and 
soil), where differences in the urban tree species composition vary among these zones.  CARB staff 
scaled the annualized state-wide estimates of CO2e (that includes mortality and prunning) to reflect 
the Bjorkman et. al. (2015) estimates. To estimate annualized carbon sequestration by climate zone 
(𝑆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑧𝑜𝑛𝑒), the ratio of the urban climate zone area (Aclimate zone) to the State’s urban area (Astate total) 
was multiplied by the State’s total urban estimate of CO2e sequestration per year (Sstate total) 
(Equation 15).  

𝑆𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑧𝑜𝑛𝑒 = 𝑆𝑠𝑡𝑎𝑡𝑒 𝑡𝑜𝑡𝑎𝑙  𝑥  
𝐴𝑐𝑙𝑖𝑎𝑚𝑡𝑒 𝑧𝑜𝑛𝑒

𝐴𝑠𝑡𝑎𝑡𝑒 𝑡𝑜𝑡𝑎𝑙
     (15) 

To determine the uncertainty of the urban forest CO2e storage estimates CARB staff preformed one-
thousand Monte Carlo simulations for each time period CARB staff had DOQQ or NAIP imagery (1995 
– 2016). Sources of error include the field plot sampling (McPherson et al., 2016), allometric 
equations (Pillsbury et al. 1998), proportion of tree canopy and the carbon fraction (McGroddy, et al., 
2004).  The estimate of CO2e storage for the baseline year 2010 (�̂�2010) was calculated by multiplying 
by the carbon fraction (𝐹𝑐) by the sum of the biomass of all the plots (𝐵𝑝𝑙𝑜𝑡) divide by the area of each 

plot (𝐴𝑝𝑙𝑜𝑡) (Equation 16). The X variable is a random number from a normal distribution with a 

mean = 0 and a standard deviation = 1.  The 𝑆𝐸 variable is the standard error. 

 

�̂�2010 = (𝐹𝑐 + 𝑋𝑓𝑐𝑆𝐸𝑓𝑐) ∑
(𝐵𝑝𝑙𝑜𝑡 + 𝑋𝑝𝑙𝑜𝑡𝑆𝐸𝑝𝑙𝑜𝑡)

𝐴𝑝𝑙𝑜𝑡

𝑝𝑙𝑜𝑡

𝑖=1

 

   (16) 

To estimate the uncertainty of carbon storage of urban forests outside the (2010) base year. CARB 
staff multiply baseline (2010) carbon estimate (�̂�2010) by the proportion of urban tree canopy cover 
ratio for a given year (�̂�𝑦𝑒𝑎𝑟) to the base year (�̂�2010) and the urban area of a given year (𝑈𝑦𝑒𝑎𝑟) to 

the base year (𝑈2010) (Equation 17). 

�̂�𝑦𝑒𝑎𝑟 = �̂�2010 𝑥 
𝑝𝑦𝑒𝑎𝑟+𝑋𝑦𝑒𝑎𝑟𝑆𝐸𝑦𝑒𝑎𝑟 

𝑝2010+𝑋2010𝑆𝐸2010
 𝑥 

𝑈𝑦𝑒𝑎𝑟

𝑈2010
    (17) 

 

Converting to CO2e is calculated by multiplying the carbon estimate of a given year (�̂�𝑦𝑒𝑎𝑟) by the 

ratio between molar mass of carbon dioxide (𝑀𝐶𝑂2
) 44.01 g mol-1 and carbon (𝑀𝐶) 12.01 g mol-1 

(Equation 18). 

𝐶𝑂2�̂�𝑦𝑒𝑎𝑟 = �̂�𝑦𝑒𝑎𝑟  𝑥 
𝑀𝐶𝑂2

𝑀𝐶
       (18) 
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To produce a carbon density map of the urban forest, CARB staff employed a machine learning 
approach with a random forest classifier that involves training a subset of the NAIP imagery into two 
classes, urban tree canopy and non-urban tree canopy (i.e. buildings, roads, and bare ground and 
water bodies). These training sites were used to inform the random forest machine learning 
algorithm in Google Earth Engine to predict the extent of the urban tree canopy statewide for the 
year 2010.  

To study California’s future urban forest, CARB staff looked at CARB’s scoping plan (2017) to consider 
two scenarios involving low and high management for increasing California’s urban forest canopy. 
The low and high management scenarios aims to increase the current urban forest canopy by 20% 
and 40% respectively by 2030. CARB staff calculate and present the potential CO2e storage that could 
be found under these two scenarios with a growing urban tree canopy cover and compare them to 
the current trend. The methods for projecting future carbon stocks are the same as the retrospective 
approach in analyzing changes in canopy cover as a proxy for CO2e storage. 

   

4C – Results 

With a simple random sample CARB staff estimate the urban tree canopy cover in California to be 
14.4% in 2010 with a range of 12.1% in 1995 and a high as 15.5% in 2016 (Table 11). Overall the 
urban tree canopy has increased 3.4% from 1995 to 2016. The 2030 percent canopy cover values are 
the State’s target for increasing and improving California urban forest under the low and high 
scenario (Figure 25).   

 

Table 11. Urban tree canopy cover (UTC) for California by year (1995 – 2016) extracted from 
DOQQ and NAIP imagery.   

 Year 

 1995 2005 2009 2010 2012 2014 2016 

Mean CA UTC 12.1 13.1 13.7 14.4 14.6 14.6 15.5 

Lower CI 10.8 11.8 12.4 13.0 13.3 13.2 14.1 

Upper CI 13.4 14.4 15.1 15.8 16.0 16.0 16.9 
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Figure 25. California urban forest canopy cover by year with error bars represent confidence 
intervals (α = 0.05).  Changes in percent urban tree canopy cover was estimated from DOQQ (1990-

1999), aerial imagery from the USDA NAIP (2005, 2009, 2010, 2012, 2014 and 2016). The point 
sample size, n = 2,500 for each year. 

 

When calculating California’s urban forest CO2e storage, CARB staff found a net increase of 69 to 109 
Tg over a 21-year period (1995 to 2016) (Table 12). This increase coincides with an urban expansion 
into crop and natural lands. To control for the increase CO2e storage due to the growing urban 
footprint, CARB staff found the urban tree canopy cover to have also increase within the US Census 
(1990) urban footprint. This suggests an increase in urban forest CO2e storage without urban 
expansion due to increase canopy cover (Figure 26 and Figure 27). After 2010 NAIP imagery was 
flew more regularly allowing for biennial estimates of carbon storage.  
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Table 12. California urban forest CO2e storage by year from 1995 to 2016 with two 2030 future 
scenarios. The first row shows stored CO2e within the 1990 urban footprint. The second row 

presents CO2e with a growing urban footprint as defined by the U.S. Census. The 2030 low and high 
estimates assumes a year 2010 urban footprint (*). 

 Year 

  1995 2005 2009 2010 2012 2014 2016 
2030 
(Low) 

2030 
(High) 

Tg CO2e Stored (1990 
Urban Footprint) 68.6 74.2 77.8 81.6 83.0 82.8 87.8 102.0 119.1 
Tg CO2e (with urban 
growth) 68.6 88.1 92.4 101.3 103.0 102.7 108.9 126.6* 147.7* 

95% CI (Tg CO2e) 7.3 8.9 9.1 9.7 9.7 9.7 10.0 - - 

Urban Area (km2) 17333 20581 20581 21509 21509 21508 21508 21508 21508 

 

 

Figure 26. Above, shows California urban forest carbon inventory by year from 1995 to 2016. 
Error bar confidence intervals (α = 0.05) were estimated through a Monte Carlo simulation 
evaluating error from four major sources (percent canopy cover, field sampling, allometric 

equations, and carbon fraction of biomass).  California urban land area has increased from 17,333 
to 21,509 km2 from 1990 to 2010 (US Census). The Bjorkman et al. (2015) method was used to 

estimate CO2e for urban forest lands with data from urban FIA, UFORE and municipal tree 
inventories. Change in percent urban tree canopy cover was estimated from DOQQ (1990-1999), 

aerial imagery from the USDA NAIP (2005, 2009, 2010, 2012, 2014 and 2016). 

CARB staff processed the urban FIA dataset with iTree to see how CO2e storage was allocated by tree 
species across the California urban forest. Of the 185 species recorded, CARB staff found the top 3 
urban trees to be native to California and include coast live oak (Quercus agrifolia) (15%), coast 
redwood (Sequoia sempervirens) (9%), and Monterey pine (Pinus radiata) (5%).   Canary island pine 
(Pinus canariensis) (3%) and bluegum eucalyptus (Eucalyptus globulus) (3%) were found to share 
the greatest CO2e storage among non-native urban tree in California (Figure 26). 
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Figure 27. A 2010 distribution of CO2e storage among 185 tree species in California’s urban forest. 

 
 
 

Sequestering of carbon dioxide (CO2e yr-1) occur at different rates across the six climate zones of 
California urban forest. The northern California coast sequester the most per unit of land with 1.92 
MT CO2e yr-1 ha-1, where the south west desert was found to have a lower sequestration density of 
0.20 MT CO2e yr-1 ha-1. Rate of sequestration density varied greatly across California (Table 13). 
Estimate urban forest carbon density for 2010 were mapped onto a 30 m grid. CARB staff found 
higher densities of carbon along protected areas, city parks and older residential neighborhoods. 
Younger neighborhood showed lower carbon densities (Figure 28).    
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Table 13. Urban forest CO2e storage and sequestration density for 6 California climate zones (Inland Empire, Inland Valleys, Interior 
West, Northern California Coast, Southern California Coast and Southwest Desert).  The zones are based largely on the Sunset National 

Garden Book’s 45 climate zones (Brenzel, 1997). 

  Climate Zones 

 
  UA State Total Inland Empire Inland Valleys Interior West N. CA Coast S. CA Coast 

SW 
Desert 

B
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rk
m

an
 

e
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al
. 2

0
1

5
 

Urban Tree Canopy (ha) 320,048 46,932 108,045 5,089 84,484 69,837 5,662 

CO2 stored (metric tons) 102,995,988 11,504,190 35,544,868 1,389,054 33,768,935 19,823,727 965,214 

CO2 sequestered (metric tons yr-1) 7,225,191 785,169 2,171,692 92,592 2,745,568 1,340,972 89,198 

Urban Land Area (km2) 21,280 4,712 6,189 361 3,806 5,030 1,183 

C
A

R
B

 

M
ET

R
O

P
O

LI
S 
–

 

M
o

rt
al

it
y 

C
o

rr
e

ct
e

d
 (Tg CO2e yr-1) 1.9 0.2 0.6 0.0 0.7 0.4 0.0 

(MT CO2e yr-1) 1,919,694 208,615 577,007 24,601 729,482 356,289 23,699 

(MT CO2e yr-1 ha-1) 0.90 0.44 0.93 0.68 1.92 0.71 0.20 

 

 



 

Figure 28. a) Sacramento 2010 urban forest carbon density derived from machined learning urban 
tree canopy cover. b) Satellite image of Sacramento’s urban forest. 

4D – Uncertainty 

The uncertainty associated with the annual urban forest carbon estimates is approximately +/- 10% 
each year. This uncertainty stems from the errors that could occur in the field sampling, allometric 
equations, proportion of canopy cover and the carbon fraction. These errors are typical when 
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performing field based and remotely sensed measurements and must be aggregated to account for 
the full level of confidence. As more and newer field and remote sensed data becomes available and 
better allometry is derived, the confidence in these estimate will increase and the uncertainty will 
decrease.  

4E – Discussion 

The METROPOLIS method quantified carbon stocks of urban trees spanning over two decades (1995 
– 2016) to see how urban forest carbon could be spatially mapped (2010) using field inventories of 
individual trees processed with iTree software.  The field inventory was collected among different 
cities spanning several years over. Repeated measurement of the same tree to observe growth or tree 
mortality could not be extracted from these datasets. As a result, CARB staff estimated tree growth 
and loss from aerial imagery (NAIP) by capturing changes in canopy cover. The approach allows for 
tracking changes in CO2e at 30 m starting in 1995 and biennial after 2010.  Since the urban forest 
field inventory is not refreshed, CARB staff assume during the duration for the aerial imagery (1995-
2016) that the species composition of the urban forest has not changed significantly and that the 
distribution of tree heights and DBH among the urban tree population in California remains relatively 
constant during this time period. METROPOLIS captures changes in CO2e with respect to an increase 
or decrease canopy cover and urban land area. Ideally, to verify the assumptions, CARB staff would 
have revisited field plot data that could be used to further correct potential biases in the approach.  

The urban tree canopy cover image classification is an integral part in being able to spatially track 
change occurring in urban forests and discover specific areas where urban forest are well stocked 
versus communities with under planted trees. There are other tree canopy cover classification 
products that are available that are comparable to the approach. First, Bjorkman et al. 2015 had used 
an urban tree canopy layer of California provided by a private company called Earth Define (2012). 
Their product estimated a statewide average tree canopy cover of 15.7 % with an overall accuracy of 
82.4% for the year 2012. This approach involves calculating the presence and absence of classified 1 
m tree canopy cover pixels over a 30 m grid to estimate percent tree canopy cover. Another approach 
is the Landsat Tree Cover Continuous Fields, which provides a 30 m grid of canopy cover and an 
estimate of uncertainty in woody vegetation greater than 5 meters in height (Sexton, et al., 2013). 
The Landsat Tree Cover Continuous Fields canopy cover product is available for years 2000, 2005 
and 2010. CARB is continuing to explore new novel remote sensing approaches to spatially and 
temporally quantify and track urban forest canopy and CO2e storage of individual trees resulting 
from tree growth, planting, pruning and removal (Figure 29).  
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Figure 29. CARB is developing a new machine learning approach to track gains and losses in urban 
tree canopy cover. The top image shows the extent of the urban tree canopy in 2012 relative 2005. 
Areas in orange represents the urban tree canopy that remains unchanged, where light green pixel 

represent growth and red a loss in tree canopy cover between 2005 and 2012. 

 

While urban forest only make up a modest 3% (103 Tg CO2e) of the natural working lands GHG 
inventory, the trees’ close proximity to people provides a unique opportunity to sequester CO2 that 
is publicly visible along with providing many co-benefits (Figure 30). Despite the relatively modest 
GHG storage capacity of urban forest, carbon sequestered on these lands are very stable compared 
to California’s natural forest lands that are experiencing a longer fire season with more intense and 
larger wild fires. In comparison to wild lands, urban forest are irrigated through the summer and are 
often well cared for by land owners and professional arborists. Urban lands do continue to expand, 
but existing urban areas are unlikely to undergo land type conversion enabling many trees to become 
old and large in both residential and commercial urban communities.  Urban forests are potentially 
less likely to succumb to natural disasters that include wildfire, high winds and flooding as human 
population take measures to resist natural disasters. Lastly, urban forest carbon is likely to persist 
well into the future because of how the carbon is allocated, which is fairly well distributed across 185 
species. This reduces the probability of a widespread impact from pests, pathogens or diseases, 
which the same cannot be said for California natural forests that consisting of a handful of dominant 
forest species making up the bulk of the carbon storage.  
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Figure 30. The urban forest carbon storage represents about 3% (103 Tg CO2e) of the total natural 
and working lands carbon inventory (3,590 Tg CO2e). 

 

Urban forests continue to remain a predictable and reliable sink for atmospheric carbon to be stored. 
The land cover type, tree species diversity and co-benefits make them an obvious, healthy and safe 
choice to invest GHG reduction resources for promoting carbon storage. While urban lands are 
typically not under threat of land type conversion, they have and will likely continue to expand, 
replacing current agricultural and natural lands. Other natural and working lands serve many 
important functions to California’s economy and provide a rich diverse ecology with their own 
unique carbon story to tell.      
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5 – Soil Organic Carbon – All Land Cover Types 
 

5A – Background 

A combination of IPCC Tier 3, Tier 2, and Tier 1 methodologies were used to develop soil carbon stock 
change estimates for the inventory time period of 2001 to 2010. The inventory was differentiated by 
IPCC land-use/land-use change categories (Table 2) from managed soils in order to calculate soil 
carbon stock change due to land cover change and management. The Tier 3 approach employed the 
process-based biogeochemical model DeNitrification-DeComposition (DNDC) (Li, et al., 1992) (Li, 
2000) with California-specific activities data. The Tier 2 approach utilized the United Nations 
Intergovernmental Panel on Climate Change’s (UN IPCC) 2006 IPCC Stock Difference Method, the 
SoilGrids soil organic carbon (SOC) raster dataset (ISRIC, 2018), and IPCC provided emission/stock 
change factors (IPCC, 2006a). Tier 1 used the emission factors provided in the IPCC methodology. All 
land cover was mapped using the LANDFIRE existing vegetation dataset crosswalked to the IPCC 
defined land use/cover categories (Battles, et al., 2013). 

The DNDC model was used to estimate soil carbon stocks and stock change for all croplands, 
excluding cultivated, high organic matter containing soils (histosols) located on the Sacramento-San 
Joaquin Delta (hereafter referred to as the Delta). This includes croplands that remained croplands 
during the inventory period, croplands that were converted to other land types, and other land types 
that were converted to croplands (Table 14). For those lands that underwent conversion to/from 
cropland during the inventory period, DNDC was only used to model soil carbon stocks and stock 
change for the period during which those lands were classified as croplands. For the period 
before/after conversion the soil carbon stocks and stock change were calculated using the Tier 2 IPCC 
stock-difference approach. Similarly, soil carbon stocks and stock change for all other land use/land 
use change categories were calculated using the Tier 2 IPCC stock-difference approach. Emissions 
from the microbial oxidation of drained organic soils on the Delta were calculated using Tier 1 
emission factors provided in the 2006 IPCC Greenhouse Gas Inventory Methodology (IPCC, 2006a). 

 

Table 14. Land use/land use change categories for which soil carbon stocks and stock change were 
modeled at Tier 3 using the DNDC model. 

IPCC Land 
Category 

Category 
Code 

IPCC Category 

3B2 Cropland 3B2a Cropland Remaining Cropland 

3B2 Cropland 3B2bi Forest Land Converted to Cropland 

3B2 Cropland 3B2bii Grassland Converted to Cropland 

3B2 Cropland 3B2biv Settlements Converted to Cropland 

3B2 Cropland 3B2bv Other Land Converted to Cropland 

3B1 Forest Land 3B1bi Cropland Converted to Forest Land 

3B3 Grassland 3B3bii Cropland Converted to Grassland  

3B5 Settlements 3B5bii Cropland Converted to Settlements 

3B6 Other Land 3B6bii Cropland Converted to Other Land 

5B – Croplands – Tier 3  

5B.1 – Background 

The DNDC model (Li, et al., 1992) (Li, 2000) is a process-based computer simulation model of carbon 
and nitrogen biogeochemistry. It was developed to quantify carbon sequestration and greenhouse 
gas emissions in agroecosystems. Soil carbon stock and change on croplands were estimated using 
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the DNDC model to the standard IPCC depth of 30 cm (IPCC 2006). The model was calibrated to 
California-specific cropland soil properties, management practices, and climate (Deng, et al., 2018b). 

DNDC is driven by inputs for climate, soil, vegetation, and management practices. The core of DNDC 
consists of microbe-mediated biogeochemical processes common in terrestrial soils. The processes 
simulated by DNDC include decomposition, nitrification, denitrification, fermentation, and 
methanogenesis. DNDC simulates the rates of these processes by tracking various microbe groups’ 
responses to environmental conditions, such as: temperature, soil moisture content, pH, redox 
potential (Eh), and substrate concentration gradient. Redox potential (Eh) is a key process in DNDC. 
Daily soil Eh following soil saturation was calculated using the Nernst Equation, which is a 
thermodynamic equation that calculates Eh based on concentrations of paired oxidative and 
reductive forms of dominant oxidants in the soil. Daily Eh was then used to determine the anaerobic 
microbial activity under a given set of soil conditions using standard Michaelis-Menten-type kinetics.  

Figure 31 provides a functional overview of DNDC and how climate, soil, vegetation, and 
management practices influence Eh, dissolved organic carbon (DOC), substrate concentrations, and 
greenhouse gas (GHG) emissions in the model architecture. A full description of the DNDC scientific 
basis and processes, including all equations involved, is available at the DNDC hosting site at the 
University of New Hampshire (UNH, 2012). 

 

 

Figure 31. DNDC functional overview. 

5B.2 – Methodology 

Simulation of soil carbon fluxes to a 30 cm depth on croplands was performed by linking DNDC with 
both the California-specific database containing temporal and spatial information on weather, crop, 
soil, and farming management practices in California and annual DayMET weather data. Acreages per 
county per crop were obtained from the National Agricultural Statistics Service (USDA, 1999-2010a). 
For each reported year, model runs involved a simulated two year spin-up to initialize and equilibrate 
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carbon to match reference field data. Model output from the third simulated year was used for 
reporting.  

To harmonize the DNDC outputs with the rest of the inventory, first the discrepancies in cropland 
acreage had to be reconciled. The methodology by which acreage is reported to NASS inherently over-
estimates total acreage because acreage is reported in terms of the acres of a crop type cultivated in 
a calendar year. This produces an over estimate because fields that support a crop rotation, which is 
a common agricultural practice, are accounted for more than once in the county cropland total. This 
is one source of discrepancy between the NASS tabular data and LANDFIRE geospatial data that was 
addressed in this iteration of the soil carbon inventory. NASS data was scaled to match the LANDFIRE 
geospatial dataset used to map land cover and land cover change for most of the NWL inventories 
(urban forest and woody cropland biomass excluded). To produce a more accurate depiction of the 
proportion of annual crops to perennial crops in the final inventory, the acreage of perennial crops 
(e.g. orchards and vineyards) were held constant per county. Annual crops were proportionally 
scaled back so that the total crop acreage in a county would match the LANDFIRE dataset and more 
accurately reflect the ratio of annual to perennial crops in each county. Finally, each crop was cross 
walked to a corresponding IPCC crop type for use in calculating SOC stock change before/and land 
cover conversion (Table 15). Please refer to the Noncropland Mineral Soils – Tier 2 section for more 
detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

December 2018 Draft 
74 

Table 15. Crosswalk of NASS crop types and IPCC crop types.  

NASS Crop Type IPCC Crop Type NASS Crop Type IPCC Crop Type 

Almonds Tree Melons, Cantaloupe Long Term Cultivated 

Apples Tree Melons, Honeydew Long Term Cultivated 

Apricots Tree Melons, Watermelon Long Term Cultivated 

Artichokes Long Term Cultivated Mint, Peppermint Oil Long Term Cultivated 

Asparagus Long Term Cultivated Nectarines Tree 

Avocados Tree Oats Long Term Cultivated 

Barley Long Term Cultivated Olives Tree 

Beans, Dry Edible Long Term Cultivated Onions, Dry Long Term Cultivated 

Beans, Snap Long Term Cultivated Oranges Tree 

Broccoli Long Term Cultivated Peaches Tree 

Cabbage Long Term Cultivated Pears Tree 

Carrots Long Term Cultivated Peppers, Bell Long Term Cultivated 

Cauliflower Long Term Cultivated Peppers, Chile Long Term Cultivated 

Celery Long Term Cultivated Pistachios Tree 

Cherries, Sweet Tree Plums Tree 

Corn, Grain Long Term Cultivated l Potatoes Long Term Cultivated 

Corn, Silage Long Term Cultivated Prunes Tree 

Cotton Long Term Cultivated Pumpkins Long Term Cultivated 

Cucumbers Long Term Cultivated Raspberries Long Term Cultivated 

Dates Tree Rice Rice 

Figs Tree Safflower Long Term Cultivated 

Garlic Long Term Cultivated Spinach Long Term Cultivated 

Grapefruit Tree Squash Long Term Cultivated 

Grapes, Raisin Type Tree Strawberries Long Term Cultivated 

Grapes, Table Type Tree Sugarbeets Long Term Cultivated 

Grapes, Wine Type Tree Sunflower Long Term Cultivated 

Hay, Excluding Alfalfa Long Term Cultivated Sweet Corn Long Term Cultivated 

Hay, Alfalfa Long Term Cultivated Sweet Potatoes Long Term Cultivated 

Haylage, Excluding Alfalfa Long Term Cultivated Tangerines Tree 

Haylage, Alfalfa Long Term Cultivated Tomatoes Long Term Cultivated 

Kiwifruit Tree Tomatoes, 
Processing 

Long Term Cultivated 

Lemons Tree Walnuts, English Tree 

Lettuce, Head Long Term Cultivated Wheat, Spring Long Term Cultivated 

Lettuce, Leaf Long Term Cultivated Wheat, Winter Long Term Cultivated 

Lettuce, Romaine Long Term Cultivated  

 

Once the county cropland acreages were adjusted, they were combined with the SOC density (to a 30 
cm depth) modeled with DNDC to produce the soil carbon stocks disaggregated by county and crop 
type. For croplands that remained croplands, this method was applied to the proportionally-adjusted 
cropland acreages, disaggregated by county, using the DNDC modeled SOC density for January 1, 
2001 and December 31, 2010. The resultant calculation of soil carbon stock change was reported 
under IPCC category 3B2a – Cropland Remaining Cropland.  

Areas that were mapped as cropland in 2001 but underwent conversion to another land use/land 
cover type utilized the same methods as described above to calculate soil carbon stock and stock 
change for the period of time that the land was classified as cropland. Since LANDFIRE does not 
provide information on the date of conversion, all conversion was assumed to occur at the end of 
December 31, 2005 – exactly halfway through the inventory time period. Stock change for the second 
half of the inventory period, January 1, 2006 – December 31, 2010, was calculated using the Tier 2 
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IPCC methodology described in the Noncropland Mineral Soils - Tier 2 section. Stock change for the 
two halves of the inventory period were summed to report the total stock change from 2001 to 2010 
per land use change category. 

Lands that were converted to cropland were presumed to have undergone conversion at the same 
time as croplands that underwent conversion, on December 31, 2005. Stock and stock change on 
these lands from January 1, 2001 through December 31, 2005 were calculated using the IPCC Tier 2 
methodology. Stock change from January 1, 2006 through December 31, 2010 was calculated by first 
quantifying the difference between the calculated soil carbon density of each raster cell and the 
average cropland soil carbon density for the county in which the cell was located as modeled by 
DNDC. This difference was divided by 20, which is the number of years that the IPCC methodology 
designates for the full effect of land use conversion to take place (IPCC, 2006b). This 20 year 
annualized difference was summed for each year after conversion, in this case 5 years, to quantify 
stock difference. Again, stock change for the two halves of the inventory period were summed to 
report the total stock change from 2001 to 2010 per land use change category.  

5B.3 – Data Sources 

A California-specific database was developed to contain daily meteorological parameters, crop 
acreage by crop type, soil properties, and management practices. Data were compiled by county and 
crop type. 

Daily meteorological data for minimum and maximum air temperature, precipitation, and solar 
radiation were obtained from DAYMET (Thornton, et al., 2014). Statewide crop area data were from 
USDA’s NASS QuickStats (USDA, 1999-2010a). County level crop area data were either downloaded 
from USDA for census years or interpolated between census years.  

Soil characteristics data were obtained from USDA’s Soil Survey Geographic Database (SSURGO) 
database (USDA, 1999-2010b). Key soil data included bulk density, clay content, soil organic carbon 
(SOC) content, and pH. Area-weighted means of soil properties for each county were calculated using 
a geographic information system (GIS), by overlaying SSURGO map units on to agricultural land-use 
spatial data from the California Department of Water Resources (CDWR, 2001-2010). 

Inputs were developed for four irrigation methods: surface gravity irrigation (flooding), sprinkler, 
surface drip, and sub-surface drip (Deng, et al., 2018a). Crop irrigation method fractions were 
developed from data reported by CDWR for years 2000 to 2010. The baseline irrigation method and 
irrigation water depth for each crop were first determined from the "Cost and Return Studies" of the 
University of California at Davis (UC Davis, 2001-2010). The baseline irrigation depth was then 
varied using the ratios of 1.58, 1.27, 1.06, and 1.0 for surface gravity irrigation, sprinkler irrigation, 
surface drip, and subsurface drip, respectively, consistent with the reported water use efficiencies of 
the four irrigation methods of 60%, 75%, 90%, and 95% for flooding, sprinkler irrigation, surface 
drip, and subsurface drip, respectively (Brouwer, et al., 1989). The final irrigation depth was further 
adjusted for each county-based on the ratio of the county’s annual mean air temperature to the state-
mean air temperature so that more irrigation water would be applied for counties with a higher air 
temperature. 

 

5C – Non-Cropland Mineral Soils – Tier 2 

5C.1 – Background 

Soil carbon stock change on non-crop lands was calculated using the 2006 IPCC Tier 2 methodology. 
These land types include Forest Land (IPCC category 3B1), Grasslands (IPCC category 3B3), Wetlands 
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(IPCC category 3B4), Settlements (IPCC category 3B5), and Other Lands (IPCC category 3B6). All 
stocks are reported to a 30 cm depth as designated by IPCC (IPCC, 2006b). 

 

5C.2 – Methodology  

This section provides the equations and methods used to estimate the carbon stocks and stock 
change for the soil stratum on all non-crop land types on mineral soil. The annual change in soil 
carbon stock was calculated on a per pixel basis using raster algebra in ArcGIS. Once the annualized 
change in soil organic carbon (SOC) stock was calculated for each pixel using the following series of 
equations, the carbon stock change values were summed by land cover/land cover change category 
to yield statewide carbon stock and change results for the 2001 to 2010 inventory period and 
multiplied by 10 to represent total change over the ten year inventory period. Equations 20 through 
22 were used to quantify the annual stock change for the soil carbon pool on mineral soils (IPCC, 
2006b). 

 

 
Equation 20: Annual Change in Carbon Stocks in Soils 
 

∆𝑪𝑺𝑶𝑰𝑳𝑺 = ∆𝑪𝑴𝑰𝑵𝑬𝑹𝑨𝑳 − 𝑳𝑶𝑹𝑮𝑨𝑵𝑰𝑪 + ∆𝑪𝑰𝑵𝑶𝑹𝑮𝑨𝑵𝑰𝑪 
 
Where: 
 

 ∆𝐶𝑆𝑂𝐼𝐿𝑆 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘𝑠 𝑖𝑛 𝑠𝑜𝑖𝑙𝑠 (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 𝑦𝑒𝑎𝑟−1) 
 ∆𝐶𝑀𝐼𝑁𝐸𝑅𝐴𝐿 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛 𝑚𝑖𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑖𝑙𝑠  
                                         (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 𝑦𝑒𝑎𝑟−1) 
 𝐿𝑂𝑅𝐺𝐴𝑁𝐼𝐶 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑓𝑟𝑜𝑚 𝑑𝑟𝑎𝑖𝑛𝑒𝑑 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑠𝑜𝑖𝑙𝑠 (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 𝑦𝑒𝑎𝑟−1) 
 ∆𝐶𝐼𝑁𝑂𝑅𝐺𝐴𝑁𝐼𝐶 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘𝑠 𝑓𝑟𝑜𝑚 𝑠𝑜𝑖𝑙𝑠     
                                            (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 𝑦𝑒𝑎𝑟−1)  
                                            (𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 0 𝑢𝑛𝑙𝑒𝑠𝑠 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑇𝑖𝑒𝑟 3 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ) 
 

 

When calculating soil carbon stock change using the Tier 2 methodology, the ∆CINORGANIC variable in 
Equation 20 is assumed to be zero (IPCC, 2006b). The LORGANIC variable will be discussed in the 
Drained Organic Soils – Tier 1 section below. The annual change in organic carbon stock in mineral 
soils (∆CMINERAL) was calculated using Equation 21. 
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Equation 21: Change in Soil Carbon Stock of Mineral Soils 
 

∆𝑪𝑴𝑰𝑵𝑬𝑹𝑨𝑳 =
(𝑺𝑶𝑪𝟎 − 𝑺𝑶𝑪(𝟎−𝑻))

𝑫
 

 
Where: 
𝑆𝑂𝐶0 = 𝑆𝑜𝑖𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑦𝑒𝑎𝑟 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶)  
𝑆𝑂𝐶(0−𝑇) = 𝑆𝑜𝑖𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑  

                       (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶) 
𝐷 = 𝑇𝑖𝑚𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑠, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑓𝑜𝑟  
         𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑆𝑂𝐶 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑦𝑒𝑎𝑟)                                                                                   
         𝑇ℎ𝑒 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝐷 𝑖𝑠 20 𝑦𝑒𝑎𝑟𝑠, 𝑤ℎ𝑖𝑐ℎ 𝑤𝑎𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦                                                                               
 

 

 
 
Equation 22: Reference Carbon Stock 
 

𝑺𝑶𝑪𝟎 = ∑(𝑺𝑶𝑪𝑹𝑬𝑭 ∙ 𝑭𝑳𝑼 ∙ 𝑭𝑴𝑮 ∙ 𝑭𝑰 ∙ 𝑨)  

 
Where: 
 

𝑆𝑂𝐶0 = 𝑆𝑜𝑖𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 ℎ𝑎−1) 
𝑆𝑂𝐶𝑅𝐸𝐹 = 𝑇ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑜𝑖𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 ℎ𝑎−1) 
𝐹𝐿𝑈 = 𝑆𝑡𝑜𝑐𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑙𝑎𝑛𝑑 − 𝑢𝑠𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒  
            (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) 
𝐹𝑀𝐺 = 𝑆𝑡𝑜𝑐𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑔𝑖𝑚𝑒 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) 
𝐹𝐼 = 𝑆𝑡𝑜𝑐𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) 
𝐴 = 𝐿𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 𝑏𝑒𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (ℎ𝑎) 
 

 

5C.3 – Data Sources 

Initial soil carbon stocks (SOCREF in Equation 22) were retrieved from the global SoilsGrids 
geospatial dataset (ISRIC, 2018). The SoilGrids global dataset was clipped to the extent of California 
using GIS, and overlaid upon the 2001 LANDFIRE Existing Vegetation Type (EVT) raster dataset to 
map initial soil carbon stocks by IPCC land cover/land cover change category. EVT assignments to 
IPCC land categories are described in ARB contract final report 10-778 (Battles, et al., 2013). 

The IPCC default stock change factors (Table 16) were the foundation for the stock change factors 
developed for use in this inventory. When creating a Tier 1 inventory, the defaults are used to 
accompany the Tier 1 default SOC densities in order to calculate the soil carbon stock at the beginning 
and end of the inventory period in Equation 21 and Equation 22. The stock change factors are based 
on the assumption that varying land use and land management regimes will result in the landscape 
SOC density equilibrating at some fraction of the theoretical default maximum value, differentiated 
by climate regime, provided by the IPCC methodology. For example, forest lands are assumed to have 
stock change factors for land use (FLU), management (FMG), and organic matter inputs (FI) equal to 1. 
Meaning that forest lands which have not experienced land use change in the previous 20 years are 
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assumed to contain the maximum SOC density for the climate region in which they are located. 
California is defined as being located in the temperate (as opposed to boreal or tropical) climate 
region.  

Since the SOC inventory was conducted at Tier 2 and did not use the IPCC provided default SOC 
densities, the default stock change factors were no longer applicable. In order to calculate SOC stock 
at the end of the inventory period while using the SoilGrids SOC density raster, new stock change 
factors were developed for each land use/land use change category using the proportional change of 
the default factors using Equation 23. The resulting factors that were used in the inventory are 
reported in Table 17. 

 

Table 16. IPCC default stock change factors. 

Land-Use Category FLU FMG FI 

Cropland – Long Term Cultivated 0.80 1.00 1.00 

Cropland – Tree Crops 1.00 1.00 1.00 

Cropland – Rice 1.10 1.00 1.00 

Forest Land 1.00 1.00 1.00 

Grassland 1.00 0.95 1.00 

Settlements 0.80 0.80 0.80 

Other Lands1 NA NA NA 

Wetlands 1.10 1.00 1.00 
1 At Tier 1, Other Lands are assumed to have a SOC stock = 0, so when land is converted to the Other Land cover 
type it is assumed to lose 1/20 of it’s SOC stock every year during the 20 year transition period until either 
another land use change occurs or stock = 0.  

 

 
Equation 23: Stock Change Factors Developed for the Tier 2 Methodology 
 

𝑭𝑫𝑬𝑽 =
𝐹2

𝐹1
  

 
Where: 
 
𝐹𝐷𝐸𝑉 = 𝑆𝑡𝑜𝑐𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑇𝑖𝑒𝑟 2 𝑀𝑒𝑡ℎ𝑜𝑑𝑜𝑙𝑜𝑔𝑦 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) 
𝐹1 = 𝑆𝑡𝑜𝑐𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑙𝑎𝑛𝑑 − 𝑢𝑠𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑎𝑡 𝑡ℎ𝑒   
          𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) 
𝐹2 = 𝑆𝑡𝑜𝑐𝑘 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑙𝑎𝑛𝑑 − 𝑢𝑠𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑   
          𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) 
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Table 17. Stock change factors developed for use in the Tier 2 California soil carbon inventory.  

IPCC Category 
Code 

IPCC Category Name FLU FMG FI 

3B1bi Long Term Cultivated Cropland Converted to 
Forest Land 

1.25 1.00 1.00 

3B1bi Tree Cropland Converted to Forest Land 1.00 1.00 1.00 

3B1bi Rice Cropland Converted to Forest Land 0.91 1.00 1.00 

3B1bii Grassland Converted to Forest Land 1.00 1.05 1.00 

3B1biii Wetlands Converted to Forest Land 0.91 1.00 0.91 

3B1bv Other Land Converted to Forest Land 4.88 1.00 1.00 

3B2a Cropland Remaining Cropland NA NA NA 

3B2bi Forest Land Converted to Long Term Cultivated 
Cropland 

0.80 1.00 1.00 

3B2bi Forest Land Converted to Tree Cropland 1.00 1.00 1.00 

3B2bi Forest Land Converted to Rice Cropland 1.10 1.00 1.00 

3B2bii Grassland Converted to Long Term Cultivated 
Cropland 

0.80 1.05 1.00 

3B2bii Grassland Converted to Tree Cropland 1.00 1.05 1.00 

3B2bii Grassland Converted to Rice Cropland 1.10 1.05 1.00 

3B2biii Wetlands Converted to Cropland NA NA NA 

3B2biv Settlements Converted to Cropland NA NA NA 

3B2bv Other Land Converted to Cropland 3.91 1.00 1.00 

3B3a Grassland Remaining Grassland 1.00 0.95 1.00 

3B3bi  Forest Land Converted to Grassland 1.00 0.95 1.00 

3B3bii Long Term Cropland Converted to Grassland 1.25 0.95 1.00 

3B3bii Tree Cropland Converted to Grassland 1.00 0.95 1.00 

3B3bii Rice Cropland Converted to Grassland 0.91 0.95 1.00 

3B3biii Wetlands Converted to Grassland NA NA NA 

3B3biv Settlements Converted to Grassland NA NA NA 

3B3bv Other Land Converted to Grassland 3.40 1.00 1.00 

3B4a Wetlands Remaining Wetlands NA NA NA 

3B4b Cropland Converted to Wetlands NA NA NA 

3B4b Forest Land Converted to Wetlands 1.10 1.00 1.00 

3B4b Grasslands Converted to Wetlands NA NA NA 

3B4b Settlements Converted to Wetlands NA NA NA 

3B4b Other Land Converted to Wetlands NA NA NA 

3B5a Settlements Remaining Settlements 1.00 1.00 1.00 

3B5bi Forest Land Converted to Settlements 0.80 0.80 0.80 

3B5bii Long Term Cultivated Cropland Converted to 
Settlements 

1.00 0.80 0.80 

3B5bii Tree Cropland Converted to Settlements 0.80 0.80 0.80 

3B5bii Rice Cropland Converted to Settlements 0.73 0.80 0.80 

3B5biii Grasslands Converted to Settlements 0.80 0.84 0.80 

3B5biv Wetlands Converted to Settlements NA NA NA 

3B5bv Other Land Converted to Settlements 0.94 0.94 0.94 

3B6a Other Land Remaining Other Land 1.00 1.00 1.00 

3B6bi Forest Land Converted to Other Land 0.20 1.00 1.00 

3B6bii Cropland Converted to Other Land 0.26 1.00 1.00 

3B6biii Grassland Converted to Other Land 0.29 1.00 1.00 

3B6biv Wetlands Converted to Other Land NA NA NA 

3B6bv Settlements Converted to Other Land 1.00 1.00 1.00 
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Other Lands were a unique case that required additional stock change factor development because 
the IPCC provided stock change factors assumed that Other Lands had a stock = 0 tonnes C/ha (IPCC 
2006) whereas all other lands (Forest Land, Grassland, Wetlands, Cropland, and Settlements) were 
assumed to have SOC > 0. At Tier 2 there were no lands with an SOC stock = 0 in the SoilGrids 
geospatial dataset, including Other Lands, and so land use stock change factors were developed for 
conversion from and to the Other Land category. The stock change factors for land use (the FLU 
variable in Equation 22) were developed based on the principle put forth in the IPCC methodology 
that land use/land cover changes the SOC stock as a percentage of the regional maximum. 
Undisturbed land types, such as forests, are assumed to be at the maximum stock and more disturbed 
and/or degraded landscapes are assigned a fraction of the maximum stock. This factor was developed 
using the average SOC stock density for the land cover type at the end of the inventory period divided 
by the average SOC stock density for the land cover types the beginning of the inventory period. The 
average densities used for these calculations only included lands that did not undergo detected land 
cover change in the inventory period in order to  All factors developed using this method are listed 
in Table 18. Conversion of Other Lands to Settlements and vice versa were calculated using the 
factors provided by IPCC. Other Lands remaining Other Lands (IPCC category 3B6a) were assumed 
to have no stock loss or gain, as per the IPCC methodology.  

 

Table 18. Stock change factors for the land use category developed using the average statewide 
SOC density of each land type.  

IPCC Category 
Code 

IPCC Category Name FLU 

3B1bv Other Land Converted to Forest Land 4.88 

3B2bv Other Land Converted to Cropland 3.91 

3B3bv Other Land Converted to Grassland 3.40 

3B6bi Forest Land Converted to Other Land 0.20 

3B6bii Cropland Converted to Other Land 0.26 

3B6biii Grassland Converted to Other Land 0.29 

 

 

5D – Drained Organic Soils – Tier 1 

 

5D.1 – Background 

The Tier 3 DNDC model was not appropriate for modeling cropland soil carbon fluxes on highly 
organic, or histosol, soils because DNDC is not calibrated to model the biogeochemistry of this soil 
type. The IPCC methodology treats soil carbon stock change on organic soils is differently than stock 
change on mineral soils (Equation 20). Namely, organic soils, or histosols, are assumed to be purely 
emissive and stock change is calculated using only emission factors that are differentiated by climate 
and land use.  

In California, histosol soils are only found in the Sacramento-San Joaquin Delta (USDA, 1999-2010b) 
(Figure 32). To create a conservative estimate of emissions from organic soils, the Level 4 Delta 
Ecoregion as defined by the United States Geological Survey (USGS, 2016) was used to define the 
extent of organic soils in California.  
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Figure 32. The Sacramento-San Joaquin Delta Ecoregion. 

 

Prior to Euro-American settlement, the Delta was a 540 square mile tidal marsh characterized by 
deep peat soils (termed organic soils or histosols) slowly formed over millennia (Galloway, 1999). 
Peat is made of partially decayed organic matter that accumulates under waterlogged, and thus 
anaerobic, conditions. Since the late 1800s, drainage canals and levees have served to convert the 
Delta marshes into agricultural fields and orchards.  

Drainage exposes peat to oxygen and triggers rapid microbial oxidation. This results in the continual 
release of large amounts of previously sequestered carbon to the atmosphere as CO2. Peat oxidation 
is the principal cause of land subsidence in the Delta. Microbial oxidation of the Delta’s drained, 
organic soils has resulted in severely subsided islands that are up to 25 feet below mean sea level 
(USGS, 2017). Subsidence driven by microbial oxidation continues at a rate of 1 to 3 inches per year, 
which translates to approximately 1.25 MMT of carbon lost annually from Deltaic soils. 

5D.2 – Methodology 

The 2001 - 2010 iteration of the soil carbon inventory calculates soil carbon stock change on histosol 
soils using the Tier 1 inventory approach. The carbon stock losses were quantified using Equation 
24, which defines the calculation methods required to compute the LORGANIC variable from Equation 
19.  

 

 

 
Equation 24: Annual Carbon Loss from Drained Organic Soils 
 

𝐿𝑂𝑅𝐺𝐴𝑁𝐼𝐶 =  ∑(𝐴 ∗ 𝐸𝐹)𝑐 

Where: 
 

 𝐿𝑂𝑅𝐺𝐴𝑁𝐼𝐶 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝑙𝑜𝑠𝑠 𝑓𝑟𝑜𝑚 𝑑𝑟𝑎𝑖𝑛𝑒𝑑 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑠𝑜𝑖𝑙𝑠 (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 𝑦𝑒𝑎𝑟−1) 
 𝐴 = 𝐿𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑑𝑟𝑎𝑖𝑛𝑒𝑑 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑠𝑜𝑖𝑙𝑠 𝑖𝑛 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑡𝑦𝑝𝑒 𝑐 (ℎ𝑎) 
 𝐸𝐹 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑡𝑦𝑝𝑒 𝑐  (𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 ℎ𝑎−1 𝑦𝑒𝑎𝑟−1) 
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5D.3 – Data Sources 
The acreage of each land use category located in the Delta Ecoregion was mapped using the 
LANDFIRE geospatial product published for 2001 – 2010 (LANDFIRE, 2018). Emission factors were 
provided in the IPCC methodology and disaggregated by land use type (Table 19). 

 

Table 19. Drained organic soil emission factors by land-use type.  

Land Cover Category 
Emission Factor  
(tonnes C ha-1 year-1) 

Reference 

Cropland 10 IPCC AFOLU Chapter 5 

Forest Land 0.68 IPCC AFOLU Chapter 4 

Grassland 2.5 IPCC AFOLU Chapter 6 

Settlements 10 IPCC AFOLU Chapter 8 

Other Land* 2.5 IPCC AFOLU Chapter 6 

*This iteration deviated slightly from the IPCC methodology with regards to treatment of Other 
Lands. The Tier 1 default SOC density for Other Lands is assumed to be 0 tonnes C ha-1 (IPCC, 

2006i). Under this assumption, such soils would also not emit microbially oxidized CO2 from the 
SOC pool because that same SOC pool is assumed to be nonexistent and hence Other Lands are 

assumed to emit no CO2 from microbial oxidation on drained organic soils.  After examining the 
areas mapped in the Delta that were mapped as Other Land, it was found that such lands were quite 

similar to those mapped as Grasslands in the area. In order to avoid a large under count of 
emissions, SOC losses from drained organic soils classified as Other Lands were assumed to emit at 

the same rate as Grasslands.  

5E – Wetlands 

 

5E.1 – Background 
Wetlands are a unique land-cover type that experience inundation for all or part of the year. During 
inundation, the soil becomes anaerobic and microbes begin respiring via methanogenesis, which 
produces methane. Methane is a high global warming potential greenhouse gas (WP100 = 25). In 
addition to methane production, the anaerobic conditions caused by inundation also inhibit 
microbial decay of organic material. This process accumulates soil organic carbon in wetlands, and 
wetlands contain an outsized proportion of global soil organic carbon.  

 

5E.2 – Methodology 
CARB staff quantified soil organic carbon stock change and methane emissions from wetlands using 
IPCC Tier 1 methods, the California Aquatic Resources Inventory (CARI) geospatial dataset (SFEI, 
2016), and the Habitat Restoration Tracker (SFEI, 2015) for the year 2016. The Tier 1 equations and 
methods used to calculate the emissions and removals from wetland soils are well documented in 
the 2013 IPCC Wetland Supplement (IPCC, 2013), hence readers are referred to the Wetlands 
Supplement for equations, but the assumptions used during the analysis will be detailed here.  Tier 
1 methods are emission factor based, meaning that emissions are calculated by multiplying the IPCC-
supplied emission factor by the land area in each wetland category.  

IPCC identifies 7 wetland types: 1) peatlands, 2) flooded lands, 3) drained organic soils, 4) rewetted 
organic soils, 5) coastal wetlands, 6) inland wetland mineral soils, and 7) constructed wetlands for 
wastewater treatment (IPCC, 2006) (IPCC, 2013). CARB staff identified that three of these seven types 
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exist in California: 1) rewetted organic soils, 2) coastal wetlands, and 3) inland wetland mineral soils. 
The remaining four wetland categories either did not exist in California during the 2016 analysis year 
or existed in such small acreages as to be negligible (< 500 acres Statewide).  

Net gains or losses of carbon resulting from the balance between CO2 and CH4 emissions and removals 
for rewetted organic soils was calculated using Equations W – T. 

 

 

CARB staff calculated that wetlands in California emitted just under 1 MMT CO2e during 2016 (Table 
20). 

Table 20. 2016 wetland emissions. Positive numbers indicate carbon stock increase in the soil and 
negative numbers indicate carbon loss via methane emissions and/or microbial oxidation. 

IPCC Wetland Category CH4 Emissions1 

(MMT CO2e) 
SOC C Stock Δ2 

(MMT CO2e) 
Net Emissions3 

(MMT CO2e) 

Coastal Wetlands 0.00 -0.19 -0.19 

Inland Wetland Mineral Soils 0.47 0.17 0.64 

Rewetted Organic Soil 0.35 0.13 0.49 

Total   -0.94 

 

5D.3 – Data Sources 
According to staff analysis, the 2001 mapping of wetlands was well matched with other datasets, 
including the National Wetlands Inventory and California Aquatic Resources Inventory. The 2010 
mapping converted 99.98% of the wetland acreage mapped in 2001 to other land-use types, 
including wetland reserves such as the Suisun Marsh Reserve. To avoid enormous soil carbon losses 
from a clear geospatial modeling artifact, areas mapped as wetlands in 2001 were assumed to remain 
wetlands in 2010. Future iterations of the soil carbon inventory will attempt to address this issue, 
and all sections that were impacted by this mapping artifact are labeled To Be Determined (TBD). 
For further discussion see the “Future Refinements” section. 

 

 

5F – Results 

There were five key categories that generated 88% of total soil carbon losses: 3B2a – Cropland 
Remaining Cropland (-14 MMT C), 3B2bi – Forest Land Converted to Cropland (-7.1048 MMT C), 
3B2bii – Grassland Converted to Cropland (-4.0521 MMT C), 3B6bi – Forest Land Converted to Other 
Land (-7.0 MMT C), and 3B3a – Grassland Remaining Grassland (-4.7 MMT C). The sole category that 
exhibited significant soil carbon gains was 3B1bv – Other Land Converted to Forest Land (13 MMT 
C). Other Land Converted to Forest Land comprised >99% of soil carbon gains for the State. Over the 
ten year inventory period of 2001 to 2010, an estimated net total (the sum of all stock gains and 
losses) of 25 MMT C was lost from California soils (Table 21). This trend is primarily driven by 
management practices on the Deltaic drained organic soils and land-use change. 

The primary driver behind the large soil carbon losses form IPCC Category 3B2a – Cropland 
Remaining Croplands is the highly emissive nature of drained organic soils cultivated for crop 
production. Once such soils are drained, the organic matter that once accumulated under anaerobic 
conditions is exposed to the atmosphere and undergoes microbial oxidation, resulting in CO2 
emissions. Approximately 125,000 hectares of Cropland Remaining Cropland (LANDFIRE, 2018) 
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were cultivated on drained organic soil for the inventory period; this amounts to just over 3% of the 
total acreage in this category, yet accounts for 88% of the total category soil carbon losses and 30% 
of total losses across all land-use categories for the inventory period. In relation to all other 
categories, 3B2a accounts for 9% of the total acreage but 48% of net SOC stock change (Table 22).  

Soil carbon losses associated with land-use conversion from Forest Land to Other Land are hinged 
on the IPCC assumption that Other Land soils have a relatively low carbon density as compared to 
forest lands, and that lands in this conversion category will quickly loose soil carbon over the 20 year 
transition period (IPCC, 2006b). Since this inventory period is 10 years and transition was assumed 
to occur after 5 years, one-quarter of the original soil carbon stock for this land use category was 
calculated as lost to the atmosphere. The reverse is true for Other Land Converted to Forest Land 
(IPCC category 3B1bv), which would accumulate soil carbon stocks from the minimum stock density 
to maximum stock density for the climate regime over a 20 year transition period. This relative 
change is driven by the stock change factors FMG and FLU in Equation 23.   

Soil carbon stock losses on Grasslands that Remained Grasslands were derived from the IPCC stock 
factor for management regime (FMG in Equation 23) for slightly degraded grasslands. The slightly 
degraded FMG factor was chosen because the vast majority of California’s grasslands are dominated 
by invasive annual grasses that decrease the soil carbon stock as compared to California grasslands 
dominated by native species REFERENCES (Barry, et al., 2006) . This factor determined that California’s 
grassland soils were slightly emissive. All remaining categories accounted for 81% of the State’s land 
area but only 17% of total fluxes (Table 22).  

 

Table 21. 2001 – 2010 change in soil carbon stocks. Ecosystem budget sign convention: gains (+) to 
SOC stock, losses (-) from SOC stock to the atmosphere. Note categories To Be Determined (TBD) 

and Not Applicable (NA). 

IPCC Land 
Category 

Category 
Code 

IPCC Category 
∆𝑪𝑴𝑰𝑵𝑬𝑹𝑨𝑳  𝑳𝑶𝑹𝑮𝑨𝑵𝑰𝑪 ∆𝑪𝑺𝑶𝑰𝑳𝑺 

MMT C 

3B1 
Forest Land 

3B1a 
Forest Land Remaining Forest 
Land 

0.0000 -0.0098 -0.0098 

3B1bi Cropland Converted to Forest Land 0.0020 -0.0001 0.0021 

3B1bii 
Grassland Converted to Forest 
Land 

0.0039 < -0.0000 0.0039 

3B1biii 
Wetlands  Converted to Forest 
Land 

TBD TBD TBD 

3B1biv 
Settlements Converted to Forest 
Land 

NA NA NA 

3B1bv 
Other Land Converted to Forest 
Land 

12.5929 < -0.0000 12.5929 

Subtotal -12.5748 -0.0099 12.5847 

3B2 
Cropland 

3B2a Cropland Remaining Cropland -1.7232 -12.4521 -14.1753 

3B2bi Forest Land Converted to Cropland -7.0504 -0.0544 -7.1048 

3B2bii Grassland Converted to Cropland -4.0178 -0.0343 -4.0521 

3B2biii Wetlands Converted to Cropland TBD TBD TBD 

3B2biv Settlements Converted to Cropland NA NA NA 

3B2bv Other Land Converted to Cropland -0.4899 < -0.0000 -0.4899 

Subtotal -13.2813 -12.5408 -25.8221 

3B3 
Grassland 

3B3a Grassland Remaining Grassland -4.6764 -0.0608 -4.7372 

3B3bi 
Forest Land Converted to 
Grassland 

-1.5625 
-0.0012 

-1.5637 

3B3bii Cropland Converted to Grassland 0.0001 < -0.0000 0.0001 
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3B3biii Wetlands Converted to Grassland TBD TBD TBD 

3B3biv 
Settlements Converted to 
Grassland 

NA NA 
NA 

3B3bv 
Other Land Converted to 
Grassland 

0.0482 
< -0.0000 

0.0482 

Subtotal -6.1906 -0.0620 -6.2526 

3B4 
Wetlands 

3B4a Wetlands Remaining Wetlands TBD TBD TBD 

3B4bi 
Forest Land Converted to 
Wetlands 

0.0002 NA 0.0002 

3B4bii Cropland Converted to Wetlands TBD TBD TBD 

3B4biii Grassland Converted to Wetlands TBD TBD TBD 

3B4biv Settlements Converted to Wetlands TBD TBD TBD 

3B4bv Other Land Converted to Wetlands TBD TBD TBD 

Subtotal 0.0002 NA 0.0002 

3B5 
Settlements 

3B5a 
Settlements Remaining 
Settlements 

-0.5628 
-0.9093 

-1.4721 

3B5bi 
Forest Land Converted to 
Settlements 

-0.0843 
-0.0007 

-0.0850 

3B5bii Cropland Converted to Settlements -1.0470 -0.0856 -1.1326 

3B5biii 
Grassland Converted to 
Settlements 

-0.0768 
-0.0005 

-0.0773 

3B5biv Wetlands Converted to Settlements TBD TBD TBD 

3B5v 
Other Land Converted to 
Settlements 

-0.0011 
NA 

-0.0011 

Subtotal -1.7721 -0.9961 -2.7682 

3B6 
Other Land 

3B6a Other Land Remaining Other Land NA -0.0016 -0.0016 

3B6bi 
Forest Land Converted to Other 
Land 

-6.9782 -0.0001 
-6.9783 

3B6bii Cropland Converted to Other Land -0.1099 -0.0123 -0.1222 

3B6biii 
Grassland Converted to Other 
Land 

-0.2764 
< -0.0000 

-0.2764 

3B6biv Wetlands Converted to Other Land TBD TBD TBD 

3B6v 
Settlements Converted to Other 
Land 

NA 
NA 

NA 

Subtotal -7.3645 -0.0140 -7.3785 

Total MMT C -16.0148 -13.6228 -29.6376 

 

Table 22. 2001 – 2010 land-use change percentage of land area and soil carbon flux. Note 
categories To Be Determined (TBD) and Not Applicable (NA). 

IPCC Land 
Category 

Category 
Code 

IPCC Category Area 
(%) 

SOC Stock ∆ 
 (%) 

3B1  
Forest Land 

3B1a Forest Land Remaining Forest Land 61.30 0.02 

3B1bi Cropland Converted to Forest Land <0.01 0.03 

3B1bii Grassland Converted to Forest Land 0.12 0.32 

3B1biii Wetlands Converted to Forest Land NA NA 

3B1biv Settlements Converted to Forest Land NA NA 

3B1bv Other Land Converted to Forest Land 1.42 18.46 

Subtotal 62.85 18.85 

3B2  
Cropland 

3B2a Cropland Remaining Cropland 9.70 33.33 

3B2bi Forest Land Converted to Cropland 0.37 1.53 

3B2bii Grassland Converted to Cropland 0.23 1.38 

3B2biii Wetlands Converted to Cropland NA NA 
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3B2biv Settlements Converted to Cropland NA NA 

3B2bv Other Land Converted to Cropland 0.02 0.44 

Subtotal 10.32 36.69 

3B3  
Grassland 

3B3a Grassland Remaining Grassland 6.44 9.68 

3B3bi Forest Land Converted to Grassland 3.60 6.49 

3B3bii Cropland Converted to Grassland <0.01 0.01 

3B3biii Wetlands Converted to Grassland NA NA 

3B3biv Settlements Converted to Grassland NA NA 

3B3bv Other Land Converted to Grassland <0.01 0.10 

Subtotal 10.04 16.28 

3B4  
Wetlands 

3B4a Wetlands Remaining Wetlands 0.51 NA 

3B4bi Forest Land Converted to Wetlands <0.01 <0.01 

3B4bii Cropland Converted to Wetlands NA NA 

3B4biii Grassland Converted to Wetlands NA NA 

3B4biv Settlements Converted to Wetlands NA NA 

3B4bv Other Land Converted to Wetlands NA NA 

Subtotal 0.51 <0.01 

3B5  
Settlements 

3B5a Settlements Remaining Settlements 5.92 2.60 

3B5bi Forest Land Converted to Settlements 0.03 0.35 

3B5bii Cropland Converted to Settlements 0.49 3.41 

3B5biii Grassland Converted to Settlements 0.02 0.29 

3B5biv Wetlands Converted to Settlements NA NA 

3B5v Other Land Converted to Settlements <0.01 <0.01 

Subtotal 6.47 6.65 

3B6  
Other Land 

3B6a Other Land Remaining Other Land 7.96 NA 

3B6bi Forest Land Converted to Other Land 1.81 21.08 

3B6bii Cropland Converted to Other Land 0.05 0.46 

3B6biii Grassland Converted to Other Land NA NA 

3B6biv Wetlands Converted to Other Land NA NA 

3B6v Settlements Converted to Other Land <0.01 <0.01 

Subtotal 9.81 21.53 

 

5F.1 – Conversion from Wetlands  
According to staff analysis, the 2001 mapping of wetlands was well matched with other datasets, 
including the National Wetlands Inventory and California Aquatic Resources Inventory. The 2010 
mapping converted 99.98% of the wetland acreage mapped in 2001 to other land-use types, 
including wetland reserves such as the Suisun Marsh Reserve. To avoid enormous soil carbon losses 
from a clear geospatial modeling artifact, areas mapped as wetlands in 2001 were assumed to remain 
wetlands in 2010. Future iterations of the soil carbon inventory will attempt to address this issue, 
and all sections that were impacted by this mapping artifact are labeled To Be Determined (TBD). 
For further discussion see the “Future Refinements” section. 

 

5F.2 – Uncertainty 

The 3 major sources of uncertainty in the soil organic carbon inventory are uncertainty in land cover 
attribution, uncertainty in the initial stock estimate, and uncertainty in the factors used to calculate 
stock change. Uncertainty generated from land cover attribution mapping is ±25% and uncertainty 
in the initial soil organic carbon stock is ±70%; uncertainty for stock change factors is under 
development. Uncertainty in the resulting soil organic carbon (SOC) inventory is not formally 
quantified at this time because of the many methodologies used in unison to produce estimates of 
stock change. This version of the SOC inventory was designed to give CARB a broad understanding of 
where soil organic carbon stocks are located on the California landscape, the location and magnitude 
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of stock change, and the major drivers of stock change. CARB staff will be strategically reducing 
uncertainty in the inventory by first focusing resources on the categories that were identified to have 
the largest potential stock changes: cultivation of drained organic soil, agriculture, grasslands, and 
other lands.   

 

 

5G – Further Development 

 

5G.1 – LANDFIRE Land Category Classifications 
 

LANDFIRE geospatial products are evolving as the consortium expands its resource management 
capacity beyond wildfires. With each update, LANDFIRE endeavors to respond to requests for a 
variety of improvements. LANDFIRE vegetation mapping also abides by guidelines in the federal 
National Vegetation Classification System (NVCS). As a result, LANDFIRE has become a central 
clearinghouse of national vegetation mapping data. Consequently, continual modification of the 
Existing Vegetation Type (EVT) product is likely as user needs and standards change. The major 
source of uncertainty in ARB’s land carbon quantification method is EVT classification (Battles, et al., 
2013) (Gonzalez, et al., 2015). 

Special attention will be paid to increasing the accuracy of wetlands mapping so that land-use change 
from this category can be included in future iterations of the inventory.  

 

5G.2 – Tier 3 Biogeochemical Modelling 
 

To improve the accuracy of California’s soil carbon flux estimates, Tier 3 modeling will be adopted 
by IPCC land category in order of the category’s contribution to the total annual soil carbon stock flux, 
pending data/calibrated model availability. The first expansion of Tier 3 methods will be applied to 
the Croplands Remaining Croplands category in the San Joaquin-Sacramento Delta, to more 
accurately represent the soil organic carbon losses from drained organic soils. The model currently 
under consideration for achieving this task is SUB-CALC (Deverel & Leighton, 2010) (Deverel, et al., 
2016). SUC-CALC was specifically created to model CO2 emissions from crop cultivation on the San 
Joaquin-Sacramento Delta and currently presents the best opportunity to quantify the Deltaic soil 
organic carbon fluxes with greater accuracy.  

The planned next step is to model SOC fluxes using a vetted biogeochemical model such as DNDC (Li, 
et al., 1992) (Li, 2000) or DayCENT (Parton, et al., 1994) (Parton, et al., 2001). This process will be 
iterative and the inventory will move towards Tier 3 modeling for all land cover types in future 
versions of the inventory.  
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